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Chapter 1

Introduction

1.1 Motivation

The state estimation is an important subtask of a range decision making
problems relying on a linear-in-state model. The standard method of solving
this problem is Kalman filtering [1, 2]. The Kalman filter (KF) uses model
with normally distributed innovations. The KF gives good results in many
applications.

Nevertheless, an unbounded support of normal distribution may cause
troubles in some application where real quantities are bounded. Moreover, still
there is no methodology of choosing innovation covariances and it is difficult
to combine KF with hard restrictions on state ranges.

The mentioned drawbacks can be avoided by assuming that the innovations
involved have a distribution with restricted support.

A linear state-space model with uniform innovations (LU model) studied
in this work, complements KF in problems of this type. Strictly speaking, LU
model will be introduced and the Bayesian solution [3, 4] of estimation problem
will be developed. The proposed estimation algorithms will be applied on the
transportation data.

1.2 State of the art

This section summarizes selected results achieved world-wide in the area of
system description and identification. The motivation has driven the selection.

In the summary, the term identification means the parameter or state
estimation for a given mathematical model. The term recursive means that
the estimation is running on-line and the estimates are permanently refined.
On the other hand, off-line estimation is realized in one shot for given data.

The real system is often modelled by a black-box, locally valid, model.
Autoregressive model with exogenous inputs (ARX model), see [3], is an im-
portant representative of this model class.
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4 CHAPTER 1. INTRODUCTION

The ARX model is described by the equation reflecting the linear relation
between system outputs and inputs. This relation is determined by the model
parameters. The uncertainty of the input-output relation is characterized by
the innovations, stochastic unobserved stimulus of the model. The innovations
are supposed to be white, zero mean and with time-invariant variance. Mostly,
the innovations are assumed to be normal. The estimation procedure employs
the method of the least squares. This gives good results in many applications,
see e.g. [5, 6].

To get more precise model, unobserved quantities (states) are considered
as well. The system is then described by a state space model and not only
parameter estimation but also the subtask of the state estimation arises. The
innovations of state evolution as well as observation model are usually sup-
posed to have normal distribution. Kalman filtering (KF), see [2], is then
the first-option estimation method. The main advantage of the KF is the
simplicity but its use is restricted by assumed knowledge of the parameters
including innovation covariances. So the various extension of KF are used
like the extended Kalman filter (EKF), see [1], the iterated EKF, and the
unscented Kalman filter (UKF). All these extensions are compared in [7].

Above mentioned models deal with normally distributed innovations. The
Gaussian distribution has unbounded support. This fact can often be ac-
cepted as a reasonable approximation of reality, which is mostly bounded. In
some case, however, this assumption is unrealistic, e.g., in modelling of the
transportation systems (for encountered problems see e.g. [8]) or do not fit
subsequent processing, for instance, robust control design [9]. Then, tech-
niques similar to those dealing with unknown-but-bounded equation errors
are used, see references in [10]. They often intentionally give up stochastic in-
terpretation of the innovations and develop and analyze various algorithms of
a min-max type, cf. [11]. The unknown parameters (or states) lie then within
the bounded set. The complexity of this set is very high so approximation
is needed to obtain recursively feasible solution. The unknown-but-bounded
approaches [12, 13] face this problem by a recursive construction of a simple
(typically outer) approximation of the bounded set (support of the distribu-
tion describing knowledge about estimated quantities). The approximation
by an ellipsoid is described in [12]. An alternative way is an approximation
by a multivariate box. This methodology is used in [13]. It brings simplicity
to the subsequent use, as it provides very simple description of uncertainty.
The resulting support shape is intuitively more similar to the correct one than
ellipsoid. This solution can be extended so that approximated area consists
of an union of non-overlapping boxes. This algorithm is described in [14].

The min-max type algorithms are definitely useful but the related decision-
making tasks are unnecessarily difficult because of the broken connection to
the established statistical tools.
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1.3 Aims of the work

We wish to overcome the drawbacks outlined in Section 1.1 that are connected
with the use of KF on systems with bounded quantities. We want to keep the
advantages of the probabilistic approach and the simplicity of the estimation
algorithms. This determine the main aims of the work:

• to propose the probabilistic linear state-space model with bounded in-
novations;

• to design algorithms for the estimation of the unknown quantities of this
model;

• to demonstrate the functionality of mentioned algorithms on the simu-
lated and traffic data.

This work aims to join two approaches, that are commonly used separately.
These are (i) probabilistic approach to the modelling and estimation and (ii)
principle of the bounded errors. Here, the Bayesian theory [3, 4] is used for the
model identification while the model innovations are assumed to be bounded
– described by the uniform distribution. This approach provides a new view
on models with bounded errors as well as useful estimation algorithms.

1.4 Layout of the work

Chapter 1 is the introductory one. It contains the motivation of the work
and state of the art in the area of interest. It also summarizes the aims
of the thesis.

Chapter 2 summarizes basic theory and notation used throughout the thesis.

Chapter 3 contains main theoretical results of the work. In this chapter,
the linear uniform state model (LU model) is introduced. Subsequently,
the estimation of this model is derived here.

Chapter 4 provides the introduction to the transportation problems. The
LU model of the crossroads is constructed here.

Chapter 5 contains two illustrative examples with simulated and transporta-
tion data.

Chapter 6 concludes the work. It summarizes the results achieved and
formulates open research problems.

Appendix contains the Matlab codes of the estimation algorithms.
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Chapter 2

Underlying theory and
notations

This chapter contains notation used throughout the work, basic notions from
the decision-making area and the necessary theoretical base.

2.1 Abbreviations used

LP linear programming

MAP maximum a posteriori probability

pdf probability density function

LU model linear state model with uniformly distributed innovations

KF Kalman filter

2.2 Notation

≡ equality by definition

∝ equality up to a constant factor, i.e. f ∝ g ⇔ f = K g, K is a positive
scalar constant

x∗ a set of x-values, x ∈ x∗

x̊ the number of members in the countable set x∗

x` the length of the vector x; vectors are always columns

χx(x
∗) ≡ χ(x∗) the indicator of the set x∗ at the point x; it equals 1 if x ∈ x∗

and it is zero otherwise

7



8 CHAPTER 2. UNDERLYING THEORY AND NOTATIONS

xt, ut, yt unobserved state, known input and observed output of the system,
respectively; the subscript t ∈ t∗ ⊂ {0, 1, 2, . . .} labels discrete time

dt = (yt, ut) the data record at time t

xt;i is an i-th entry of the vector x at time t

xk:l ≡ [x′k, x
′
k+1, . . . , x

′
l]
′ the ordered sequence of states (xk, xk+1, . . . , xl), 1 ≤

k ≤ l; it can be also used in downwards sequence, i.e., xl:k

′ transposition

x, x lower and upper bound on x, respectively (they are used entry-wise)

∂ memory length

xr the quantity r with non-numerical superscript x; this superscript is always
placed to the left of the basic symbol

M(α,β) matrix with α rows and β columns

I(α) square identity matrix of the order α

0(α,β) zero matrix of the indicated dimensions

1(α), 0(α) column vectors of ones and zeros, respectively, both of length α

f(·|·) probability density functions (pdf); respective pdfs are distinguished
by the argument names; no formal distinction is made between a random
variable, its realization and an argument of the pdf

supp [ f(x)] the support of the pdf f : x∗ → [0,∞], i.e., the subset of x∗ on
which f(x) > 0

Ux (µ, xr) uniform pdf of the quantity x on the box with the center µ and
half-width of the support interval xr; again understood entry-wise

\ the set subtraction or an omission of a term from a sequence

∩ the set intersection

∪ the set union

∅ empty set

Θ̂ point estimate of the parameter Θ based on the available data

x̂t point estimate of the state xt based on the available data
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G(α,β) ⊗H ≡

 G11H . . . G1βH
...

...
Gα1H . . . GαβH

 Kronecker product

Rcol(M) an operator that extends a matrix M(α,β) by the zero matrix 0(α,col)

from the right, Rcol(M) ≡ [M,0(α,col)]

Lcol(M) an operator that extends a matrix M(α,β) by the zero matrix 0(α,col)

from the left, Lcol(M) ≡ [0(α,col), M ]

col(M) an operator that converts matrix M(α,β) into a column vector of the
length αβ, i.e., col(M) = [M11 . . . M1β M21 . . . M2β . . . Mα1 . . . Mαβ]′ where
Mi,j is an i-th row and j-th column entry of the matrix M(α,β)

δ(x) Dirac delta function, δ(x) = 0 ⇔ x 6= 0, δ(x) = ∞⇔ x = 0∫
δ(x) dx = 1,

∫
f(x) δ(x) dx = f(0),

∫
f(x) δ(x− x0) dx = f(x0)

2.3 Selected notions on system identification

Quantity is a multivariate mapping. This notion corresponds to random
variable used in probability theory.

Realization is a value of the quantity for its fixed argument. Mostly, the
quantity and its realization are not distinguished. The proper meaning
is implied by the context.

System is the part of the world that is of our interest.

System behavior Q∗ consists of all possible realizations Q, i.e., values of
all quantities related to the system and considered within the time span
determined by the horizon of interest.

System input u ∈ u∗ is an optional quantity, which is supposed to influence
system behavior.

System output y ∈ y∗ is an observable quantity that provides information
about the system behavior. To be or not to be output or input is a
relative property. The input is always directly manipulated.

Internal quantity X ∈ X∗ is a general unobservable quantity, which influ-
ences the system output.

System state x ∈ x∗ is an unobservable quantity, which influences the sys-
tem output. It contains the information on the previous evolution of
the system.



10 CHAPTER 2. UNDERLYING THEORY AND NOTATIONS

System parameter Θ ∈ Θ∗ is an unobservable time-invariant quantity,
which influences the system output. It doesn’t depend on the system
input.

2.4 Basics of the Bayesian approach

In Bayesian view, the system is described by probability density functions
(pdfs). The statistical inference about unknown quantity is understood as
correction of prior subjective pdf by objective data. The resulting posterior
pdf conditioned on observed data provides a basis for a subsequent decision
making, see [3], [4]. The basic operations with pdfs are described below.

2.4.1 Calculus with pdfs

Here, the main rules of the manipulating with pdfs, see e.g. [4], are sum-
marized. The system is described by the joint pdf f (Q) on system behavior
Q∗ ≡ (a, b, c)∗. For any (a, b, c) ∈ (a, b, c)∗, the following relationships between
pdfs hold:

Non-negativity f(a, b|c), f(a|b, c), f(b|a, c), f(b|c) ≥ 0.

Normalization
∫

f(a, b|c) dadb =
∫

f(a|b, c) da =
∫

f(b|a, c) db = 1.

Chain rule f(a, b|c) = f(a|b, c)f(b|c) = f(b|a, c)f(a|c).
Marginalization f(b|c) =

∫
f(a, b|c) da, f(a|c) =

∫
f(a, b|c) db.

Bayes rule f(b|a, c) =
f(a|b, c)f(b|c)

f(a|c)
=

=
f(a|b, c)f(b|c)∫
f(a|b, c)f(b|c) db

∝ f(a|b, c)f(b|c). (2.1)

where ∝ means equality up to a constant factor.

Note that integrals used are always definite and multivariate ones. The
integration domain coincides with the support of the pdf in its argument.

The meaning of basic pdfs derived from f(Q) is as follow

f(a, b|c) joint pdf on (a, b)∗ conditioned by c; it restricts f(Q) on the cross-section
of Q∗ given by a fixed c

f(a|c) marginal pdf on a∗ conditioned by c; it restricts f(Q) on the cross-section
of Q∗ given by a fixed c with no information on b

f(b|a, c) marginal pdf on b∗ conditioned by a, c; it restricts f(Q) on the cross-section
of Q∗ given by a fixed a, c

Quantities a, b are conditionally independent under the condition c iff

f(a, b|c) = f(a|c)f(b|c) ⇔ f(a|b, c) = f(a|c) or f(b|a, c) = f(b|c). (2.2)
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2.4.2 Bayesian learning

The behavior Q consists generally of observable outputs y1:̊t, optional in-
puts u1:̊t and internal quantities X0:̊t that are never observed directly, see
definitions in Section 2.3. The collection of the outputs and inputs is called
data and denoted d1:̊t, i.e. dt = (yt, ut), t ∈ t∗ = {1, . . . , t̊}. We aim to de-
scribe or influence all considered quantities, including the unobservable ones.
Here, we describe how to get the estimate of internal quantities X0:̊t using the
theoretical background in [4].

Filtration

The joint pdf f(Q) = f(d1:t, X0:t) describing both observed and internal quan-
tities is constructed from the undermentioned elements.

1. The outputs yt are related to the past data d1:t−1 and inputs ut through
the observation model

{f(yt|ut, d
1:t−1, Xt) ≡ f(yt|ut, d

1:t−1, X1:t)}t∈t∗ (2.3)

that is known up to unknown internal quantities Xt ∈ X∗
t .

2. The evolution of the internal quantities X0:̊t ∈ X∗ is described by the
time evolution model{

f(Xt|ut, d
1:t−1, Xt−1) ≡ f(Xt|ut, d

1:t−1, X1:t−1)
}

t∈t∗
. (2.4)

3. The controller is described by the pdfs

{f(ut|d1:t−1) ≡ f(ut|d1:t−1, X1:t−1)}t∈t∗ (2.5)

Here, the validity of the natural conditions of control (NCC) [3] is sup-
posed. They require the independence of ut on X1:t−1 when conditioned
on d1:t−1, i.e., they assume that X1:t−1 is unknown to the controller.

4. The initial data d0 ≡ d1:0 coincide with the prior information about the
initial internal quantity X0 so that the prior pdf f(X0) fulfills

f(X0) ≡ f(X0|d0). (2.6)

Further
f(X1|u1, X0) ≡ f(X1|u1, d0, X0)

and
f(y1|u1, X1) ≡ (y1|u1, d0, X1)

f(u1) ≡ f(u1|d0)

The term f(X0), called prior pdf, is by definition the first term in the
sequence of pdfs (2.4).
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The evolution of the pdf f(Xt|ut, d
1:t−1), called Bayesian filtration of un-

known internal quantities Xt, is described by the following recursion that
starts from the prior pdf f(X0):

• Data updating

f(Xt|d1:t) =
f(yt|ut, d

1:t−1, Xt)f(Xt|ut, d
1:t−1)

f(yt|ut, d1:t−1)

∝ f(yt|ut, d
1:t−1, Xt)f(Xt|ut, d

1:t−1) (2.7)

that incorporates information on the output yt and the input ut, and

• Time updating

f(Xt+1|ut+1, d
1:t) =

∫
f(Xt+1|ut+1, d

1:t, Xt)f(Xt|d1:t) dXt (2.8)

that reflects the time evolution Xt → Xt+1.

The model of the system f(yt|ut, d
1:t−1) obtained by filtering is called predictive

pdf .
The described Bayesian filtering combines prior information in f(X0), the-

oretical knowledge described by f(yt|ut, d
1:t−1, Xt), f(Xt|ut, d

1:t−1, Xt−1) and
observed data d1:t = (y1:t, u1:t) by using deductive rules of the calculus with
pdfs.

In the following paragraphs, the special case of the filtering are solved.

State filtration

Here, the unknown internal quantity X coincides with the system state x,
see Section 2.3, i.e., {Xt ≡ xt}t∈t∗ . All relations mentioned in the previous
paragraph hold with X replaced by x.

Parameter estimation

Estimation is a special version of filtering. It arises when all internal quan-
tities are time invariant, i.e., {Xt ≡ Θ}t∈t∗ . The common value Θ is called
parameter, see Section 2.3.

In the case of the parameter estimation, the pdfs (2.3) – (2.6) take the
following form.

1. The observation model (2.3) is known up to unknown parameter Θ

{f(yt|ut, d
1:t−1, Θ)}t∈t∗ .

and it is called parametric model .



2.4. BASICS OF THE BAYESIAN APPROACH 13

2. The time evolution model (2.4) is{
f(Θt|ut, d

1:t−1, Θt−1) ≡ δ(Θt −Θt−1)
}

t∈t∗
.

where the employed Dirac delta function δ(·) is a formal pdf of the
measure fully concentrated on the zero argument, see definition on the
page 9.

3. The controller fulfilling NCC (2.5) has the same form{
f(ut|d1:t−1)

}
t∈t∗

(2.9)

Consequently, it holds (see [3])

{f(Θ|d1:t−1) ≡ f(Θ|ut, d
1:t−1)}t∈t∗

4. The prior pdf on Θ fulfills

f(Θ) ≡ f(Θ|d0) =︸︷︷︸
(2.9)

f(Θ|u1, d0). (2.10)

and
f(y1|u1, Θ) ≡ (y1|u1, d0, Θ)

f(u1) ≡ f(u1|d0)

The predictive model of the system f(yt|ut, d
1:t−1) is given by the formula

f(yt|ut, d
1:t−1) =

∫
f(yt|ut, d

1:t−1, Θ)f(Θ|d1:t−1) dΘ. (2.11)

The evolution of the pdf f(Θ|d1:t) is called Bayesian parameter estima-
tion. It generates the most general parameter estimate that coincides with
the posterior pdf of the unknown parameter. Its evolution is described by the
recursion identical with data updating (2.7)

f(Θ|d1:t) =
f(yt|ut, d

1:t−1, Θ)f(Θ|d1:t−1)

f(yt|ut, d1:t−1)

∝ f(yt|ut, d
1:t−1, Θ)f(Θ|d1:t−1) (2.12)

The recursion starts from the prior pdf f(Θ) (2.10). Time updating “dis-
appears”, see definition of Dirac delta function on the page 9.

The non-recursive (batch) variant of the estimation formula (2.12) is ob-
tained by its repetitive use and looks as follows

f(Θ|d1:t) =

∏t
τ=1 f(yτ |uτ , d

1:τ−1, Θ)f(Θ)∫ ∏t
τ=1 f(yτ |uτ , d1:τ−1, Θ)f(Θ) dΘ

≡ L(Θ, d1:t)f(Θ)

I(d1:t)
. (2.13)
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The introduced likelihood function

L(Θ, d1:t) ≡
t∏

τ=1

f(yτ |uτ , d
1:τ−1, Θ)

evolves according to the recursion identical with that for the posterior pdf
(2.12) but it starts from the L(Θ, d0) identically equal to 1.

The normalization factor I(·) in (2.13) is defined by the formula

I(d1:t) =

∫
L(Θ, d1:t)f(Θ) dΘ ∝ f(yt|ut, d

1:t−1).

With it, the predictive model of the system (2.11) can alternatively be ex-
pressed

f(yt|ut, d
1:t−1) =

I(d1:t)

I(d1:t−1)
.

Joint state and parameter estimation

Here, the problem of joint parameter and state estimation is formulated and
solved. In this case, the internal quantity Xt is supposed to contain both
states xt and parameter Θ, see Section 2.3, i.e.,

{Xt = (xt, Θ)}t∈t∗ ,

that are mutually dependent. Now, the system behavior Q consist of the data
d1:t, states x0:t and parameter Θ. The system is described by the following
pdfs.

1. The observation model (2.3) reads{
f(yt|ut, d

1:t−1, xt, Θ)
}

t∈t∗

2. The time evolution model (2.4) is{
f(xt|ut, d

1:t−1, xt−1, Θ)
}

t∈t∗
, Θ does not change

3. Controller fulfilling NCC (2.5) has again the form{
f(ut|d1:t−1)

}
t∈t∗

4. According to (2.6), expressing a prior information on the states and
parameters reads

f(x1|u1, x0, Θ) ≡ f(x1|u1, d0, x0, Θ)

f(x0, Θ) ≡ f(x0|d0, Θ)f(Θ|d0)

and
f(y1|u1, x1, Θ) ≡ f(y1|u1, d0, x1, Θ)

f(u1) ≡ f(u1|d0).
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The evolution of the pdf f(xt, Θ|ut, d
1:t−1) is called the joint Bayesian

parameter and state estimation. It is described by the following recursion
that starts from the prior pdf f(x0, Θ)

• Data updating

f(xt, Θ|d1:t) =
f(yt|ut, d

1:t−1, xt, Θ)f(xt, Θ|ut, d
1:t−1)

f(yt|ut, d1:t−1)

∝ f(yt|ut, d
1:t−1, xt, Θ)f(xt, Θ|ut, d

1:t−1)

that incorporates information about the output yt and the input ut, and

• Time updating

f(xt+1, Θ|ut+1, d
1:t) =

∫
x∗t

f(xt+1|ut+1, d
1:t, xt, Θ)f(xt, Θ|d1:t) dxt

that reflects the time evolution xt → xt+1 while Θ stays unchanged.

2.5 MAP estimate

The method of maximum a posteriori (MAP) estimation provides a point
estimate of an unobserved quantity X on the basis of observed data D and
prior information about X, see e.g. [15],

X̂MAP = arg maxX∗
f(D|X)f(X)∫

X∗ f(D|X)f(X)dX
= arg maxX∗f(D|X)f(X) (2.14)

The denominator of the posterior distribution does not depend on X and
therefore plays no role in the optimization.

2.6 Taylor series

The Taylor series, see e.g. [16], represents the real function f as a sum of
terms calculated from the values of its derivatives at a single point. The
partial sums (the Taylor polynomials) of the series can be used as adequate
approximations of the entire function.

In this work, the following expansion of logarithmic function is used.

ln x =
x− 1

1
− (x− 1)2

2
+

(x− 1)3

3
− . . . , applicable for 0 < x ≤ 2.

We use only the first term, i.e.,

ln x ≈ x− 1

1
, 0 < x ≤ 2. (2.15)
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2.7 Basics of the static optimization methods

The static optimization includes problems that can be described by a system
of linear or non-linear equations and inequalities. The optimality criterion is
given by a real function of a vector variable. The aim is to find a maximum or
minimum of this function. Simultaneously, the constraints have to be fulfilled,
that are given by the system of equalities and inequalities. Such task is called
“mathematical programming”.

A general problem of the mathematical programming, see e.g. [17], has
the form

Find a vector X such that J(X) → min

while AX ≤ B, AeqX = Beq,

g(X) ≤ 0, geq(X) = 0, X ≤ X ≤ X,

where
J(X) is known scalar function; it is called objective function
g(X), geq(X) are known real vector functions
A, Aeq are known matrices of the appropriate size
B, Beq, X, X are known column vectors of the appropriate lengths

In Matlab, the nonlinear programming problems are solved by the function
“fmincon”. This function tries to find a constrained minimum of a scalar
function of several variables starting at an initial estimate.

According to Matlab notation, the function “fmincon” can be used as
follows, see [18],

X = fmincon (J(X), X0,A,B) starts at X0 and attempts to find a minimum
of the function J(X) subject to the linear inequalities AX <= B.

X = fmincon (J(X), X0,A,B,Aeq,Beq) solves the problem above while ad-
ditionally satisfying the equality constraints AeqX = Beq. Set A = ∅
and B = ∅ if no inequalities are employed.

X = fmincon
(
J(X), X0,A,B,Aeq,Beq, X, X

)
defines a set of lower and up-

per bounds on the design variables, X, so that the solution is always in
the range X ≤ X ≤ X. Set Aeq = ∅ and Beq = ∅ if no equalities are
specified.

X = fmincon
(
J(X), X0,A,B,Aeq,Beq, X, X,nonlcon

)
solves the problem

above and simultaneously subjects the minimization to the nonlinear
inequalities g(X) and/or equalities geq(X) defined in nonlcon; fmincon
optimizes such that g(X) ≤ 0 and geq(X) = 0. Set X = ∅ and/or X = ∅
if no bounds exist.
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X = fmincon
(
J(X), X0,A,B,Aeq,Beq), X, X,nonlcon,optimset

)
minimizes

with the optimization options specified in the structure options. Use the
function “optimset” to set these options. Set nonlcon = ∅ if there are
no nonlinear inequality or equality constraints.

2.7.1 Linear programming

A substantial simplification arises when the objective function and the restric-
tive conditions are linear, see e.g. [17], [19]. Then, the vector X is searched for
that minimizes the linear objective function, J = C ′X and fulfills the system
of inequalities AX ≤ B, X ≤ X ≤ X and equalities AeqX = Beq, i.e.,

Find a vector X such that J ≡ C′X → min

while AX ≤ B, AeqX = Beq, X ≤ X ≤ X, (2.16)

where
A, Aeq are known matrices of the appropriate size
B, Beq, C, X, X are known vectors of the appropriate lengths

In this work, the LP problems are solved by the Matlab function “linprog”
in experiments. According to Matlab notation, this function can be used as
follows, see [18],

X = linprog(C,A,B) solves min C ′X such that AX ≤ B.

X = linprog(C,A,B,Aeq,Beq) solves the same problem as above while addi-
tionally satisfying the equality constraints AeqX = Beq. Set A = ∅ and
B = ∅ if no inequalities are employed.

X = linprog(C,A,B,Aeq,Beq, X, X) sets also a set of lower and upper bounds
on the optimized variables, X, so that the solution is always in the range
X ≤ X ≤ X. Set Aeq = ∅ and Beq = ∅ if no equalities are specified.
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Chapter 3

Linear uniform state-space
model

Here, linear uniform state-space model (LU model) is introduced. Further-
more, the estimation of its parameters and state filtering are derived. The
model has the form of the state space model that is known from Kalman fil-
tering (KF) theory [1] but the assumed uniform distribution of innovations
make it substantially different. The model generalizes the uniform state-space
model treated by the author in [20]. Here, this model is extended by the con-
sidering the time-variant model matrices and the offsets.

The introduced LU model provides the following advantages: (i) it respects
natural bounds on stochastic disturbances, (ii) it allows estimation of the
innovation range, and (iii) it allows to respect “naturally” hard, physically
given, prior bounds on model parameters and states.

3.1 Model description

The considered system is modelled by the following state (3.1) and observation
(3.2) equations

xt = cAtxt−1 + cBtut + cFt + xet (3.1)

yt = cCtxt + cDtut + cGt + yet, (3.2)

where

t ∈ t∗ ≡ {1, 2, . . . , t̊} labels discrete time;

x, u, y are state, input and output vectors respectively, see definition in
Section 2.3;

cAt,
cBt,

cFt,
cCt,

cDt,
cGt are model matrices of appropriate dimensions;

they are sums of the form

cAt = At + eA, cBt = Bt + eB, etc., (3.3)

19
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where
At contains known, generally time-variant entries of cAt and zeros,
eA contains unknown time-invariant entries of cAt and zeros (similarly
for other system matrices); the unknown entries are collected into the
“coefficient part” θ of the unknown parameter Θ (3.5)

θ ≡ [ eA, eB, eF, eC, eD, eG] ;

xet,
yet are the vectors of the state and output innovations respectively; they
are assumed to be mutually conditionally independent (see (2.2)) and
identically distributed.

The innovation are assumed to have uniform distributions

f ( xet) = U (0, xr) , f ( yet) = U (0, yr) (3.4)

where
U (µ, r) is uniform pdf on the box with the center µ and half-width of the
support interval equal to r (understood entry-wise).

Equations (3.1) and (3.2) together with the assumptions (3.4) define the
linear uniform state-space model (LU model).

We denote
Θ ≡ [θ, xr, yr] (3.5)

and get, for t ∈ t∗ = {1, 2, . . . , t̊}

f (xt|xt−1, ut, Θ) = U (x̃t,
xr) , x̃t = cAtxt−1 + cBtut + cFt (3.6)

f (yt|xt, ut, Θ) = U (ỹt,
yr) , ỹt = cCtxt + cDtut + cGt (3.7)

where (3.6) specifies the time evolution model (2.4) and (3.7) specifies the
observation model (2.3) from Section 2.4.2.

Possible restrictions on the state values are in the form

S2 = {x ≤ xt ≤ x}, t ∈ t∗. (3.8)

According to Section 2.4.2, we assume that generator of inputs u1:̊t ≡
[u′1, . . . , u

′
t̊
]′ meets natural conditions of control (2.5), i.e., it uses explicitly

neither state values nor unknown parameters.
Further, we suppose that the initial state x0 and parameter Θ are uniformly

distributed on the set S0 defined by the inequalities

S0 =
{
x0 ≤ x0 ≤ x0, 0 < xr ≤ xr, 0 < yr ≤ yr, θ ≤ θ ≤ θ

}
. (3.9)

They are assumed a priori mutually independent, hence

f (x0,
xr, yr, θ) = f (x0) f ( xr) f ( yr) f (θ) .
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Then, the joint pdf of data d1:̊t, dt = (yt, ut), the state trajectory x0:̊t and
parameter Θ of the LU model is

f
(
d1:̊t, x0:̊t, Θ

)
= f (x0) f (Θ)

t̊∏
t=1

f (yt|ut, xt, Θ) f (xt|ut, xt−1, Θ) f
(
ut

∣∣d1:t−1
)

∝
x`∏

i=1

( xri)
−t̊

y`∏
i=1

( yri)
−t̊χ(S) (3.10)

where
x`, y` is the size of the state and output vector, respectively
χ(S) is the indicator of the support S. The convex set S is given as follows

S = S0 ∩ S1 ∩ S2. (3.11)

with S0 given by (3.9) and S2 by (3.8). The set S1 is specified by inequalities

− xr ≤ xt − (At + eA)xt−1 − (Bt + eB)ut − (Ft + eF ) ≤ xr

− yr ≤ yt − (Ct + eC)xt − (Dt + eD)ut − (Gt + eG) ≤ yr (3.12)

with t ∈ t∗.
Note that the inequalities (3.12) follow from the (3.1) and (3.2) with lower

and upper noise values implied by (3.4).
The estimation tasks for the LU model will be solved in the following

sections. For this purpose, the joint pdf (3.10) can be rewritten as follows

f
(
d1:̊t, x0:̊t, Θ

)
= f (D, X) = f (D|X) f (X) (3.13)

The estimated (unknown) internal quantities (see definition in Section 2.3)
from (3.10) are collected into X. The remaining (known) quantities are col-

lected into D. Here, D contains known elements from the set
{

d1:̊t, x0:̊t, θ
}

and

X contains unknown elements from the set
{

x0:̊t, θ, xr, yr
}

. By construction,

it holds D ∩X = ∅ and D ∪X = {d1:̊t, x0:̊t, θ, xr, yr}.

3.2 General estimation problem

Using the notation (3.13), we can formulate the estimation problems in a
common way and demonstrate its complexity. The posterior pdf f (X|D) is
searched for on the basis of the prior pdf f (X) and of the pdf describing
known quantities f (D|X).

According to the Bayes rule (2.1), the required posterior pdf f (X|D) is
proportional to f (D|X) f (X) on support S defined by (3.11). The number of
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vertices of the support is proportional to the number of data. This is a large
number for realistic situations. Consequently, evaluation of moments of this
pdf is computationally demanding. This is why we evaluate the maximum a
posteriori probability (MAP) estimate X̂MAP (2.14) of the unknown X. For
the LU model, we get

X̂MAP = arg maxX∈S

x`∏
i=1

( xri)
−t̊

y`∏
j=1

( yrj)
−t̊. (3.14)

The support S (3.11) defines the maximization domain. For the further
computation, we use a negative logarithm of (3.14) divided by t̊. Then, the
MAP estimation problem converts into

X̂MAP = arg minX∈S

 x`∑
i=1

ln( xri) +

y`∑
j=1

ln( yrj)

 . (3.15)

To obtain the MAP estimate of X, we have to find the minimum of (3.15)
on the set S (3.11). We can approximate the particular entries of (3.15) with
the help of Taylor series (2.15). Thus we obtain for 0 < xri ≤ 2, 0 < yrj ≤ 2

ln( xri) ≈ xri − 1, i = 1, . . . , x`, ln( yrj) ≈ yrj − 1, j = 1, . . . , y`.

Note that the condition on the magnitude of particular entries xr and
yr can be always fulfilled by an appropriate data scaling. Using the above
mentioned approximation, the optimization (3.15) simplifies to the following
form

X̂MAP = arg minX∈S

 x`∑
i=1

xri +

y`∑
j=1

yrj

 . (3.16)

Then, if the inequalities describing the set S (3.11) are linear in the un-
knowns, the MAP estimate (3.16) can be found as the solution of the linear
programming (LP), see Section 2.7.1,

Find a vector X such that J ≡ C′X =
x`∑

i=1

xri +

y`∑
j=1

yrj → min

while AX ≤ B, X ≤ X ≤ X, (3.17)

where
C ′ ≡ [0′

(X`−x`−y`,1)
,1′

x`+y` ], C` = X`;
A and B are known matrix and vector, respectively; they result from the
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inequalities describing the set S1 (3.12);
X, X are known vectors; they stem from S0 (3.9) and S2 (3.8).

Note that X is given by the type of the solved task. It contains always
the half-widths xr and yr. They are always placed at the end of X.

The above mentioned condition of the linearity is satisfied if either (i)
parameters θ or (ii) states x1:̊t are known.

3.3 Off-line state and parameter estimation

In this section, two off-line estimation problems are solved: (i) one shot es-
timation of states x0:̊t and the innovation boundaries xr, yr with the given θ
and (ii) the one shot estimation of the parameters θ and xr, yr with the known
states x0:̊t.

3.3.1 Estimation of the state and the noise bounds

In this case, we suppose that all entries of the model matrices (3.3) are known,
i.e., cAt ≡ At,

cBt ≡ Bt, etc. An unknown states x0:̊t and the noise bounds
xr, yr are estimated. Hence, the vector X in (3.17) is defined as follows

X =
[ (

xt̊:0
)′

xr′ yr′
]′

. (3.18)

The vector X has X` = (̊t + 2)x` + y` entries, C ′ ≡ [0′
((̊t+1)x`,1)

,1′
(x`+y`)

].

A and B are given by the inequalities describing the set S1 (3.12) rearranged
into the following form

xt − Atxt−1 − xr ≤ Btut + Ft

−xt + Atxt−1 − xr ≤ −Btut − Ft

Ctxt − yr ≤ yt −Dtut −Gt

−Ctxt − yr ≤ −yt + Dtut + Gt

for t = t̊, t̊− 1, . . . , 1.
With it, A and B have the following form

A =

[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
,

with

A11 =


I(x`) −At̊ 0(x`,x`) . . . 0(x`,x`) 0(x`,x`) 0(x`,x`)

−I(x`) At̊ 0(x`,x`) . . . 0(x`,x`) 0(x`,x`) 0(x`,x`)
...

...
...

. . .
...

...
...

0(x`,x`) 0(x`,x`) 0(x`,x`) . . . 0(x`,x`) I(x`) −A1

0(x`,x`) 0(x`,x`) 0(x`,x`) . . . 0(x`,x`) −I(x`) A1

,
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A12 = 1(2̊t,1) ⊗
[
−I(x`) 0(x`,y`)

]
,

A21 =


Ct . . . 0(y

`, x`) 0(y
`, x`) 0(y

`, x`)
−Ct . . . 0(y

`, x`) 0(y
`, x`) 0(y

`, x`)
...

. . .
...

...
...

0(y
`, x`) . . . 0(y

`, x`) C1 0(y
`, x`)

0(y
`, x`) . . . 0(y

`, x`) −C1 0(y
`, x`)

,

A22 = 1(2̊t,1) ⊗
[
0(y`,x`) − I(y`)

]
,

B1 =


Btut + Ft

−Btut − Ft
...

B1u1 + F1

−B1u1 − F1

, B2 =


yt −Dtut −Gt

−yt + Dtut + Gt
...

y1 −D1u1 −G1u1

−y1 + D1u1 + G1u1

,

where
I(α) is the square identity matrix of the order α,
0(α,β) is the zero matrix of the indicated dimensions,
⊗ denotes Kronecker product defined in Section 2.2.

The matrix A has 2 t̊(x` + y`) rows and X` ≡ (̊t + 2)x` + y` columns. The
number of entries of the column vector B equals to the number of rows of A,
i.e., B` ≡ 2̊t(x` + y`).

Under assumption that the LU model matrices are time-invariant, i.e.,
At = A, Bt = B, Ft = F , Ct = C, Dt = D, Gt = G, for t = 1, . . . , t̊, the
construction of the A, B can be simplified to the following form

A11 = Rx`(I(̊t) ⊗K ⊗ I(x`))− Lx`(I(̊t) ⊗K ⊗ A),

A12 = −1(2̊t) ⊗Ry`(I(x`)),

A21 = Rx`(I(̊t) ⊗K ⊗ C),

A22 = −1(2̊t) ⊗ Lx`(I(y`)),

B1 =
[
I(̊t) ⊗K ⊗B

]
ut̊:1 + [1(̊t) ⊗K ⊗ F ],

B2 =
[
I(̊t) ⊗K ⊗ I(y`)

]
yt̊:1 −

[
I(̊t) ⊗K ⊗D

]
ut̊:1 − [1(̊t) ⊗K ⊗G].

where
Rcol(M) and Lcol(M) are operators adding col zero columns from the right
and left, respectively, see Section 2.2,
K ≡ [1 − 1]′.
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Prior information on X reflecting S0 (3.9) and S2 (3.8) is assumed to be
in the form X ≤ X ≤ X with

X =


1(2̊tx`,1) ⊗ x

x0

0(x`,1)

0(y`,1)

, X =


1(2̊tx`,1) ⊗ x

x0
xr
yr

, (3.19)

where x ≤ x, x0 ≤ x0,
xr > 0, yr > 0, entry-wise; these values are known and

optional and specify our prior information.
Note that for t̊ too large, the estimation of xt̊, . . . , xt̊−∂ for some reasonably

chosen fixed memory ∂ is to be considered, see Section 3.4.2.

3.3.2 Estimation of the parameters and the noise bounds

Here, the case of known state trajectory x0:̊t and the unknown time-invariant
model parameters θ = ( eA, eB, eF, eC, eD, eG) and noise bounds xr, yr is
considered. This case arises in situations with directly measurable state.
Moreover, the result is needed for the joint swapping-based estimation of
state and parameters, which is addressed in Section 3.4.4. Again, the MAP
estimate is obtained by solving of LP problem. Now, the vector X in the LP
(3.17) has the form:

X ≡ [col( eA)′, col( eB)′, col( eF )′, col( eC)′, col( eD)′, col( eG)′, xr′, yr′]
′
.

(3.20)
where col(M) stacks the non-zero rows of the matrix M into a column vector.

Note that the vector C in LP (3.17) contains x` + y` units at the end and
zeros otherwise. If no entry of the system matrices is known, then C reaches
its maximal size

C ≡ [0′(x`x`+x`u`+x`+y`x`+y`u`+y`,1),1
′
(x`+y`,1)]

′.

A and B result from inequalities describing the set S1 (3.12) that are rear-
ranged into the following form with t ∈ t∗ = {̊t, t̊− 1, . . . , 1}

eAxt−1 + eBut + eF − xr ≤ xt − Atxt−1 −Btut − Ft

− eAxt−1 − eBut − eF − xr ≤ −xt + Atxt−1 + Btut + Ft

eCxt + eDut + eG− yr ≤ yt − Ctxt −Dtut −Gt

− eCxt − eDut − eG− yr ≤ −yt + Ctxt + Dtut + Gt

The matrix A and vector B in LP (3.17) are then

A ≡
[
A11 A12 A13
A21 A22 A23

]
, B =

[
B1
B2

]
with
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A11 =


SEL eA,xt̊−1

SEL eB,ut̊
SEL eF,1

−SEL eA,xt̊−1
−SEL eB,ut̊

−SEL eF,1

...
...

...
SEL eA,x0 SEL eB,u1 SEL eF,1

−SEL eA,x0 −SEL eB,u1 −SEL eF,1

 .

where

SELM ;vt =

 selM(vt, 1) . . . 0
...

. . .
...

0 . . . selM(vt, v
`)

 , (3.21)

selM(vt, i) creates a reduced vector (scalar) ṽt from vt ∈ {xt, ut, 1}, t ∈ t∗; it
selects entries of vt with index corresponding to the non-zero columns on the
i-th row of the matrix (vector) M , M ∈ { eA, eB, eF, eC, eD, eG}; note that
if all entries on i-th row are equal to zero, then ṽt is an “empty” vector.

A12 = 02̊tx`,n, the upper bound on n is y`(x` + u` + 1)

A13 ≡ 1(2̊t,1) ⊗
[
−I(x`) 0(x`,y`)

]
where ⊗ means Kronecker product defined in Section 2.2.

A21 = 02̊ty`,m, the upper bound on m is x`(x` + u` + 1)

A22 =


SEL eC,xt̊

SEL eD,ut̊
SEL eG,1

−SEL eC,xt̊
−SEL eD,ut̊

−SEL eG,1
...

...
...

SEL eC,x1 SEL eD,u1 SEL eG,1

−SEL eC,x1 −SEL eD,u1 −SEL eG,1



A23 = 1(2̊t,1) ⊗
[
0(y`,x`) − I(y`)

]

B1 ≡


xt̊ − At̊xt̊−1 −Bt̊ut̊ − Ft̊

−xt̊ + At̊xt̊−1 + Bt̊ut̊ + Ft̊
...

x1 − A1x0 −B1u1 − F1

−x1 + A1x0 + B1u1 + F1

, B2 ≡


ẙt − Ctxt −Dtut −Gt

−ẙt + Ctxt + Dtut + Gt
...

y1 − Ctx1 −D1u1 −G1

−y1 + Ctx1 + D1u1 + G1

.
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A prior information on X reflecting S0 (3.9) is assumed to be in the form
X ≤ X ≤ X with

X =
[
col( eA)′, col( eB)′, col( eF )′, col( eC)′, col( eD)′, col( eG)′, 0(x`,1), 0(y`,1)

]′
,

(3.22)

X =
[
col( eA)′, col( eB)′, col( eF )′, col( eC)′, col( eD)′, col( eG)′, xr, yr

]′
.

3.4 On-line state and parameter estimation

The real-time (on-line) estimation provides the state and/or parameter esti-
mates in each time step. Standard Bayesian learning with a fixed lag ∂ ≥ 0
works with the data dt−∂:t and states xt−∂:t. The superfluous state xt−∂−1

and data item dt−∂−1 are integrated out from the posterior pdf in every time
step t. With increasing t, this operation soon becomes intractable because
of increasing complexity of the support of the posterior pdf. Therefore, an
approximation is needed.

The on-line Bayesian learning task is outlined and its approximation is
proposed in Subsection 3.4.1. With the help of proposed approximation, the
tasks of state and parameters estimation are solved in Subsections 3.4.2 and
3.4.3, respectively.

Then, the assumptions of Section 3.3, i.e., knowledge of either the state, or
the parameters θ are relaxed and on-line joint parameter and state estimation
is performed. This relaxation violates the assumptions of LP on linearity of
the constraints. Two promising approaches are proposed to solve this problem
in the Subsection 3.4.4.

3.4.1 Approximation for the on-line Bayesian learning

The Bayesian on-line estimation with restricted memory evolves the join pdf

f
(
dt−∂:t, xt−∂:t, Θ

)
, t ∈ t∗,

where integer 0 ≤ ∂ < t̊ means memory length, i.e., the length of the sliding
window; within this window the estimation is performed. Using a newest data
dt and state xt, we can write (see Section 2.4.2)

f
(
dt−∂:t, xt−∂:t, Θ

)
=

∫
f (yt|xt, ut, Θ) f (xt|xt−1, ut, Θ) f

(
ut

∣∣d1:t−1
)

×f
(
dt−∂−1:t−1, xt−∂−1:t−1, Θ

)
ddt−∂−1dxt−∂−1
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The recursion starts in the time t = ∂ + 1 with

f
(
d1:∂, x0:∂, Θ

)
≡ f

(
d0:∂, x0:∂, Θ

)
.

We suppose the pdf describing input generator as follows

f
(
ut

∣∣d1:t−1
)
≡ f

(
ut

∣∣dt−∂:t−1
)
.

Recursive computation of the posterior pdf ( ∂ ≥ 2 )

1. For t ≤ ∂:
The computation is identical to the off-line case treated in Section 3.3.

2. For t = ∂ + 1:

f
(
d1:∂+1, x1:∂+1, Θ

)
=

∫
f

(
d1:∂+1, x0:∂+1, Θ

)
d x0 (3.23)

=
∂+1∏
τ=1

f (yτ |xτ , uτ , Θ)
∂+1∏
τ=2

f (xτ |xτ−1, uτ , Θ)
∂+1∏
τ=1

f
(
uτ

∣∣d1:τ−1
)
f (Θ)

×
∫

f (x1|x0, u1, Θ) f (x0) d x0︸ ︷︷ ︸
I(x1,u1,Θ)

3. For t = ∂ + 2:

f
(
d2:∂+2, x2:∂+2, Θ

)
(3.24)

=
∂+2∏
τ=2

f (yτ |xτ , uτ , Θ)
∂+2∏
τ=3

f (xτ |xτ−1, uτ , Θ) f
(
u∂+2

∣∣d2:∂+1
)
f (Θ)

×
∫

f (y1|x1, u1, Θ) f (x2|x1, u2, Θ)
∂+1∏
τ=1

f
(
uτ

∣∣d1:τ−1
)
I(x1, u1, Θ)d d1 d x1︸ ︷︷ ︸

I(x2,u∂+1,d2:∂ ,Θ)

with f (u1|d1:0) ≡ f (u1)

4. Generally for ∂ + 2 ≤ t ≤ t̊:

f
(
dt−∂:t, xt−∂:t, Θ

)
=

t∏
τ=t−∂

f (yτ |xτ , uτ , Θ)
t∏

τ=t−∂+1

f (xτ |xτ−1, uτ , Θ)

×f
(
ut

∣∣dt−∂:t
)
f (Θ) I(xt−∂, ut−1, d

t−∂:t−2, Θ) (3.25)
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with

I(xt−∂, ut−1, d
t−∂:t−2, Θ) (3.26)

=

∫
f (yt−∂−1|xt−∂−1, ut−∂−1, Θ) f (xt−∂|xt−∂−1, ut−∂, Θ)

×f
(
ut−∂

∣∣dt−∂−1:t−2
)

×I(xt−∂−1, ut−2, d
t−∂−1:t−3, Θ)d dt−∂−1 d xt−∂−1.

The first term in the recursion, i.e., I(x2, u∂+1, d
2:∂, Θ), is computed

according to (3.24).

Note that for ∂ = 1, the term I(x1, u1, Θ) in (3.23) stays unchanged, while
the term I(xt−∂, ut−1, d

t−∂:t−2, Θ) (3.26) is simplified to I(xt−1, ut−1, Θ) and
its recursive update is as follows

I(xt−1, ut−1, Θ) = (3.27)

∫
f (yt−2|xt−2, ut−2, Θ) f (xt−1|xt−2, ut−1, Θ) f (ut−1|dt−2)

×I(xt−2, ut−2, Θ)d dt−2 d xt−2.

Illustrative example: Evolution of the factor I

We consider simple system without input, with scalar state and output de-
scribed by the LU model (3.1), (3.2)

xt ∼ U (axt−1,
xr) , a > 0; yt ∼ U (cxt,

yr) , c > 0; x0 ∼ U
(

x0+x0

2
,

x0−x0

2

)
∂ = 1; dt ≡ yt; Θ = (a, c, xr, yr), x0 < x0 given.
The first step of the integration corresponding to (3.23) is

f
(
x1:2, y1:2, Θ

)

= f (y2|x2, Θ) f (y1|x1, Θ) f (x2|x1, Θ) f (Θ)

∫
f(x1|x0)f(x0)dx0

=
1

2 xr

1

(2 yr)2
χ(x∗2)χ(y∗2)χ(y∗1)f (Θ)
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×
∫ x0

x0

1

2 xr

1

x0 − x0

χ(|x1 − ax0| ≤ xr)χ(x0 ≤ x0 ≤ x0)dx0

=
1

(2 xr)

1

(2 yr)2
χ(x∗2)χ(y∗2)χ(y∗1)f (Θ)

× 1

(2 xr)

1

x0 − x0

[
min

(
x1 + xr

a
, x0

)
−max

(
x1 − xr

a
, x0

)]
︸ ︷︷ ︸

I(x1,Θ)

The term I(x1, Θ) represents a non-uniform distribution. Figure 3.1 shows
the resulting distributions for x1 with xr = 0.1, x0 ∈ (0.8, 1.2) and various
values of a.

Figure 3.1: Resulting distribution I(x1, a) for various values of parameter a

In the next step, the pdf f (y2:3, x2:3, Θ) is to be computed using (3.27)

f
(
y2:3, x2:3, Θ

)
= f (y3|x3, Θ) f (y2|x2, Θ) f (x3|x2, Θ) f (Θ) I(x2, Θ)

with

I(x2, Θ) =

∫
1

2 xr

1

2 yr
χ(x∗2)χ(y∗1)I(x1, Θ)dy1dx1

=
1

(2 xr)2

1

x0 − x0

∫
χ

(
x2 − xr

a
≤ x1 ≤

x2 + xr

a

)
×

[
min

(
x1 + xr

a
, x0

)
−max

(
x1 − xr

a
, x0

)]
dy1dx1

The term I(x2, Θ) contains quadratic expressions. Generally, the term
I(xt, Θ), t > 0 is described by the power function containing expressions up
to the power t, I(xt, Θ) =

∫
f (xt|xt−1, Θ) I(xt−1, Θ)d xt−1

This simple example demonstrates the complexity of the on-line estimation
task with restricted memory and the necessity of the appropriate approxima-
tion in the applied on-line estimation.



3.4. ON-LINE STATE AND PARAMETER ESTIMATION 31

Approximation methods

Generally, the terms I(x1, u1, Θ) from (3.23) and I(xt−∂, ut−1, d
t−∂:t−2, Θ),

t ∈ t∗ (3.26) are to be approximated. We aim at approximating of these
terms by the uniform pdfs as follows.

The factor I in (3.26) is to be approximated by a pdf f̃(xt−∂, ut−1, d
t−∂:t−2, Θ),

t ∈ t∗ so that it holds for measured data dt−∂:t−2, ut−1,

I(xt−∂, ut−1, d
t−∂:t−2, Θ)

f̃(xt−∂, ut−1, dt−∂:t−2, Θ)
≈ 1, x ∈ x∗, Θ ∈ Θ∗.

Similarly, I(x1, u1, Θ) is approximated by the pdf f̃(x1, u1, Θ).
Two proposed methods of the approximation for the on-line estimation of

the LU model are described below.

1. ,,Cut off” the superfluous old states

for t = ∂ + 1 (it corresponds to the step 2 on the page 28):
the pdf I(x1, u1, Θ) from (3.23) is replaced by f (x1|x0, u1, Θ)x0=x̂0

, where
x̂0 is the point estimate of the state x0

for ∂ + 2 ≤ t ≤ t̊ (it correspond to the steps 3 and 4 on the page 28):
the term I(x2, u∂+1, d

2:∂, Θ) from (3.24) and I(xt−∂, ut−1, d
t−∂:t−2, Θ)

(3.26) from (3.25) are replaced by the
f (xt−∂|xt−∂−1, ut−∂, Θ)xt−∂−1=x̂t−∂−1

∏t−1
τ=t−∂ f

(
uτ

∣∣dt−∂:τ−1
)
,

where x̂t−∂−1 is the point estimate of xt−∂−1 from the previous estimation
step and it holds

f
(
dt−∂:t, xt−∂:t, Θ

)
≈

t∏
τ=t−∂

f (yτ |xτ , uτ , Θ)
t∏

τ=t−∂

f (xτ |xτ−1, uτ , Θ)xt−∂−1=x̂t−∂−1

×
t∏

τ=t−∂

f
(
uτ

∣∣dt−∂:τ−1
)
f (Θ)

where f
(
ut−∂

∣∣dt−∂:t−∂−1
)
≡ f (ut−∂)

2. Substitution of the non-uniform pdf by the uniform one
The principle is that the non-uniform pdf I(xt−∂, ut−1, d

t−∂:t−2, Θ) is replaced
with the uniform pdf f̃(xt−∂, ut−1, d

t−∂:t−2, Θ), which has the same support,
see illustrative Figure 3.2 for the one-dimensional x with pdf f(x).
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Figure 3.2: Approximation of the non-uniform distribution I (full line) by the
uniform one f̃ (dashed line)

Approximate on-line MAP estimation

In the following sections, an approximate on-line state and/or parameter es-
timation is performed. The approximation by “cutting-off” method is used.
The estimated quantities are concentrated in the vector Xt. The estimation
run on the sliding window of the length ∂.

With the proposed “cut-off” approximation, the MAP estimation problem
converts into

X̂MAP = arg minXt∈St

 x`∑
i=1

xri +

y`∑
j=1

yrj

 . (3.28)

where St outgoing from the set S (3.11) is as follows

St = S0t ∩ S1t ∩ S2t (3.29)

where

S0t =
{
xt−∂−1 = x̂t−∂−1, 0 < xr ≤ xr, 0 < yr ≤ yr, θ ≤ θ ≤ θ

}
, (3.30)

x̂t−∂−1 is the estimate of xt−∂−1 from the previous step

S̃1t = {− xr ≤ xτ − cAτxτ−1 − cBτuτ − cFτ ≤ xr, (3.31)

− yr ≤ yτ − cCτxτ − cDτuτ − cGτ ≤ yr}

S2t = {x ≤ xτ ≤ x}, (3.32)

with τ ∈ {t− ∂, . . . , t}, t ∈ {∂ + 1, . . . , t̊}.
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In the same way as in the off-line case, see page 22, the MAP estimate
(3.28) can be found as the solution of the LP under condition that the in-
equalities describing the set St (3.29) are linear in the unknowns. Then, the
on-line LP task has the following form

Find a vector Xt, t ∈ t∗ such that J ≡ C′Xt =
x`∑

i=1

xri +

y`∑
j=1

yrj → min

while AtXt ≤ Bt, Xt ≤ Xt ≤ Xt, (3.33)

where
C ′ ≡ [0′

(X`−x`−y`,1)
,1′

x`+y` ], C` = X`;
At and Bt are known matrix and vector, respectively; they result from the
inequalities describing the set S1t (3.31);
X t, X t are known vectors; they stem from S0t (3.30) and S2t (3.32).

Note that Xt contains always the half-widths xr and yr that are placed at
the end of the vector.

The above mentioned condition of the linearity is satisfied if either (i)
parameters θ or (ii) states xt−∂:t are known.

3.4.2 Estimation of the state and the noise bounds

In the case of “cutt-off” approximation, the on-line estimation of the states
and the noise bounds is similar to the off-line estimation that is described in
the Section 3.3.1. The differences resulting from the use of the sliding window
∂ are as follows. The vector of an estimated quantities, c.f. (3.18), takes the
form

Xt =
[ (

xt:t−∂
)′ xr′ yr′

]′
where t ∈ t∗ = {∂ + 1, . . . , t̊}.

The prior information described by (3.19) in the off-line version, is modified
so that the original condition x0 ≤ x0 ≤ x0 changes to xt−∂−1 = x̂t−∂−1,
t ∈ t∗ = {∂+1, . . . t̊}, where x̂t−∂−1 is the estimate of xt−∂−1 from the previous
step. Using the sets S0t (3.30) and S2t (3.32), we obtain X t ≤ Xt ≤ X t with

X t =


1(2(∂+1)x`,1) ⊗ x

x̂t−∂−1

0(x`,1)

0(y`,1)

, X t =


1(2(∂+1)x`,1) ⊗ x

x̂t−∂−1
xr
yr

, (3.34)

where vectors x ≤ x, xr > 0, yr > 0, entry-wise; these values are known and
optional and specify our prior information.

The matrix At and vector Bt for LP (3.17) imply from the set S1t (3.31)
and have the following form
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At =

[
A11t A12t

A21t A22t

]
, Bt =

[
B1t

B2t

]
,

with

A11t =



I(x`,x`) −At 0(x`,x`) . . . 0(x`,x`)

−I(x`,x`) At 0(x`,x`) . . . 0(x`,x`)

0(x`,x`) I(x`,x`) −At−1 . . . 0(x`,x`)

0(x`,x`) −I(x`,x`) At−1 . . . 0(x`,x`)
...

...
...

. . .
...

0(x`,x`) 0(x`,x`) . . . . . . I(x`,x`)

0(x`,x`) 0(x`,x`) . . . . . . −I(x`,x`)


,

A12t = 1(2(∂+1),1) ⊗
[
−I(x`) 0(x`,y`)

]
,

A21t =


Ct 0(y`,x`) . . . 0(y`,x`)

−Ct 0(y`,x`) . . . 0(y`,x`)
...

...
. . .

...
0(y`,x`) 0(y`,x`) . . . Ct−∂

0(y`,x`) 0(y`,x`) . . . −Ct−∂

 ,

A22t = 1(2(∂+1),1) ⊗
[
0(y`,x`) − I(y`)

]
,

B1t =



Btut + Ft

−Btut − Ft
...

Bt−∂+1ut−∂+1 + Ft−∂+1

−Bt−∂+1ut−∂+1 − Ft−∂+1

At−∂x̂t−∂−1 + Bt−∂ut−∂ + Ft−∂

−At−∂x̂t−∂−1 −Bt−∂ut−∂ − Ft−∂


,

B2t =


yt −Dtut −Gt

−yt + Dtut + Gt
...

yt−∂ −Dt−∂ut−∂ −Gt−∂

−yt−∂ + Dt−∂ut−∂ + Gt−∂

 .

Comparing with the off-line version described in Section 3.3.1, we can see
following differences:
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- the number of the rows of the matrices decreases according to the memory
length ∂

- the number of the columns in the matrices A11, A21 decreases because of
the substitution of the oldest state by its estimate

- the term At−∂x̂t−∂−1 appears in two last rows of B1 because of the substi-
tution of the oldest state by its estimate

3.4.3 Estimation of the parameters and the noise bounds

Here, the vector of estimated quantities Xt, t ∈ t∗ = {∂ + 1, . . . , t̊}, has the
identical form with X (3.20) for the off-line case, i.e.,

Xt = [col( eA)′, col( eB)′, col( eF )′, col( eC)′, col( eD)′, col( eG)′, xr′, yr′]
′
,

where col(M) stacks the non-zero rows of the matrix M into a column vector.
The prior information on Xt is also identical to the off-line case (3.22), i.e.,

it holds Xt ≤ Xt ≤ Xt, t ∈ t∗ = {∂ + 1, . . . , t̊}, with

Xt =
[
col( eA)′, col( eB)′, col( eF )′, col( eC)′, col( eD)′, col( eG)′, 0(x`,1), 0(y`,1)

]′
,

(3.35)

Xt =
[
col( eA)′, col( eB)′, col( eF )′, col( eC)′, col( eD)′, col( eG)′, xr, yr

]′
.

The matrix At and vector Bt for LP (3.17) have the identical structure to
the off-line case, see Section 3.3.1. They differ only in the number of the rows
which correspond to the memory length ∂. A and B have the following form

At =

[
A11t A12t A13t

A21t A22t A23t

]
, Bt =

[
B1t

B2t

]
with

A11t =


SEL eA,xt−1 SEL eB,ut SEL eF,1

−SEL eA,xt−1 −SEL eB,ut −SEL eF,1
...

...
...

SEL eA,xt−∂−1
SEL eB,ut−∂

SEL eF,1

−SEL eA,xt−∂−1
−SEL eB,ut−∂

−SEL eF,1

 ,

where selM(vt, i) is defined by (3.21)

A12t = 0(2(∂+1)x`,n), the upper bound on n is y`(x` + u` + 1)

A13t ≡ 1(2(∂+1),1) ⊗
[
−I(x`) 0(x`,y`)

]
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A21t = 0(2(∂+1)y`,m), the upper bound on m is x`(x` + u` + 1),

A23t = 1(2(∂+1),1) ⊗
[
0(y`,x`) − I(y`)

]
,

A22t ≡


SEL eC,xt SEL eD,ut SEL eG,1

−SEL eC,xt −SEL eD,ut −SEL eG,1
...

...
...

SEL eC,xt−∂
SEL eD,ut−∂

SEL eG,1

−SEL eC,xt−∂
−SEL eD,ut−∂1

−SEL eG,1

 ,

where selM(vt, i) is defined by (3.21).

B1t =


xt − Atxt−1 −Btut − Ft

−xt + Atxt−1 + Btut + Ft
...

xt−∂ − At−∂xt−∂−1 −Bt−∂ut−∂ − Ft−∂

−xt−∂ + At−∂xt−∂−1 + Bt−∂ut−∂ + Ft−∂

 ,

B2t =


yt − Ctxt −Dtut −Gt

−yt + Ctxt + Dtut + Gt
...

yt−∂ − Ct−∂xt−∂ −Dt−∂ut−∂ −Gt−∂

−yt−∂ + Ct−∂xt−∂ + Dt−∂ut−∂ + Gt−∂

 .

To summarize, the on-line case of the parameter estimation differs from
the off-line case only in the number of the inequalities that are involved into
the LP task.

3.4.4 Joint estimation of the parameters, states and the
noise bounds

In the case of the joint estimation parameters and states, the conditions for
the performance of the LP (3.33) are not fulfilled. Thus, we cannot use LP
(see Section 2.7.1) for the point estimation straightforwardly. We propose the
following solutions of this situation.
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1. Swapping-based joint estimation

The idea of this approach is to estimate the state xt−∂:t using technique from
Section 3.4.2, with parameters θ fixed at their last point estimates. The
resulting estimates of states, x̂t−∂:t, are subsequently used in technique from
Section 3.4.3 to obtain new estimates of the parameters θ. Initial values of
the estimates can be found in off-line mode using, for instance, a subspace
method [21] or sampling methods, e.g. [22].

2. Expansion-based joint estimation

Here, the parameter and state estimation is performed in one step. We suppose
that both state values and model parameters are unknown. Generally, only
data set (inputs and outputs) and prior information are at disposal. The
vector of estimated quantities takes the form, t ∈ t∗ = {∂ + 1, . . . , t̊},

Xt =
[
(xt:t−∂)′, col( eA)′, col( eB)′, col( eF )′, col( eC)′, col( eD)′, col( eG)′, xr′, yr′

]′
,

(3.36)

where
col(M) stacks the non-zero rows of the matrix M into a column vector.

The MAP estimate (3.28) is searched for. The LP task (3.33) is solved
here with Xt given by (3.36), C ≡ [0′(m,1),1

′
(x`+y`,1)

]′, the upper bound on m

is (∂ + 1)x` + x`x` + x`u` + x` + y`x` + u`y` + y`. The matrix At and vector
Bt are obtained from the set S1t (3.12), t ∈ t∗. The inequalities are to be
reorganized with respect to the estimated quantity Xt (3.36). Now, the above
mentioned inequalities contain also the nonlinear terms eAxt−1 and eCxt with
two unknown variables. Therefore, the conditions on linearity required by LP
are not fulfilled. The linearization by means of the Taylor expansion [16] is
proposed as follows

eAxt−1 = ( eA− Â)xt−1 + Âxt−1

= ( eA− Â)(xt−1 − x̂t−1) + ( eA− Â)x̂t−1 + Âxt−1

≈ eAx̂t−1 − Âx̂t−1 + Âxt−1, t ∈ t∗,

where Â, x̂t−1 are newest available estimates of parameters and states, respec-
tively. It is supposed that mean of ( eA− Â)(xt−1 − x̂t−1) ≈ 0.

Using similar expansion for eCxt, t ∈ t∗, we get

eCxt ≈ eCx̂t − Ĉx̂t + Ĉxt

Then, the resulting inequalities for LP (3.33), t ∈ {∂ + 1, . . . , t̊}, τ ∈
{t− ∂, . . . , t} are as follows
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xτ − eAx̂τ−1 − Âxτ−1 − Aτxτ−1 − eBuτ − eF − xr ≤ −Âx̂τ−1 + Bτuτ + Fτ

−xτ + eAx̂τ−1 + Âxτ−1 + Aτxτ−1 + eBuτ + eF − xr ≤ +Âx̂τ−1 −Bτuτ − Fτ

eCx̂τ + Ĉxτ + Cτxτ + eDuτ + eG− yr ≤ +yτ + Ĉx̂τ −Dτuτ −Gτ

− eCx̂τ − Ĉxτ − Cτxτ − eDuτ − eG− yr ≤ −yτ − Ĉx̂τ + Dτuτ + Gτ

Note that the estimates based on the data up to time t− 1, i.e., dt−∂−1:t−1

are used for LP performed in the time t. Therefore only estimates from x̂t−∂−1

up to x̂t−1 are at disposal. The estimate x̂t is replaced by its prediction, i.e.

x̂t = (At + Â)x̂t−1 + (Bt + B̂)ut + (Ft + F̂ ). (3.37)

Then, after proposed linearization, At, Bt are in the form

At =

[
A11t A12t A13t A14t

A21t A22t A23t A24t

]
, Bt =

[
B1t

B2t

]
with

A11t =



I(x`,x`) −Â− At 0(x`,x`) . . . 0(x`,x`)

−I(x`,x`) Â + At 0(x`,x`) . . . 0(x`,x`)

0(x`,x`) I(x`,x`) −Â− At−1 . . . 0(x`,x`)

0(x`,x`) −I(x`,x`) Â + At−1 . . . 0(x`,x`)
...

...
...

. . .
...

0(x`,x`) 0(x`,x`) . . . . . . I(x`,x`)

0(x`,x`) 0(x`,x`) . . . . . . −I(x`,x`)


,

A12t =


−SEL eA,x̂t−1 −SEL eB,ut −SEL eF,1

SEL eA,x̂t−1 SEL eB,ut SEL eF,1
...

...
...

−SEL eA,x̂t−∂−1
−SEL eB,ut−∂

−SEL eF,1

SEL eA,x̂t−∂−1
SEL eB,ut−∂

SEL eF,1

 ,

where selM(vt, i) is defined by (3.21),
A12t has 2(∂+1)x` rows and m columns, upper bound on m is x`(x` +u` +1),
A13t = 0(2(∂+1)x`,n), maximal size of n is y`(x` + u` + 1).

A14t ≡ 1(2(∂+1),1) ⊗
[
−I(x`) 0(x`,y`)

]
,

A21t =


Ĉ + Ct 0(y`,x`) . . . 0(y`,x`)

−Ĉ − Ct 0(y`,x`) . . . 0(y`,x`)
...

...
. . .

...

0(y`,x`) 0(y`,x`) . . . Ĉ + Ct−∂

0(y`,x`) 0(y`,x`) . . . −Ĉ − Ct−∂

 ,
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A22t = 02(∂+1)y`,m, m is defined by A11,

A23t ≡


SEL eC,x̂t SEL eD,ut SEL eG,1

−SEL eC,x̂t −SEL eD,ut −SEL eG,1
...

...
...

SEL eC,x̂t−∂
SEL eD,ut−∂

SEL eG,1

−SEL eC,x̂t−∂
−SEL eD,ut−∂1

−SEL eG,1

 ,

where selM(vt, i) is defined by (3.21), x̂t is obtained as the prediction (3.37).
A23t has 2(∂ + 1)y` rows and n columns with n defined by A12.
A24t = 1(2(∂+1),1) ⊗

[
0(y`,x`) − I(y`)

]
,

B1t =



−Âx̂t−1 + Btut + Ft

+Âx̂t−1 −Btut − Ft
...

−Âx̂t−∂ + Bt−∂+1ut−∂+1 + Ft−∂+1

+Âx̂t−∂ −Bt−∂+1ut−∂+1 − Ft−∂+1

At−∂x̂t−∂−1 + Bt−∂ut−∂ + Ft−∂

−At−∂x̂t−∂−1 −Bt−∂ut−∂ − Ft−∂


,

where x̂t is obtained as the prediction (3.37),

B2t =


Ĉx̂t + yt −Dtut −Gt

−Ĉx̂t − yt + Dtut + Gt
...

Ĉx̂t−∂ + yt−∂ −Dt−∂ut−∂ −Gt−∂

−Ĉx̂t−∂ − yt−∂ + Dt−∂ut−∂ + Gt−∂

 .

The prior information on Xt combines (3.34) and (3.35). It has the form

X t =



1(2(∂+1)x`,1) ⊗ x
x̂t−∂−1

col( eA)
col( eB)
col( eF )
col( eC)
col( eD)
col( eG)
0(x`,1)

0(y`,1)


, X t =



1(2(∂+1)x`,1) ⊗ x
x̂t−∂−1

col( eA)
col( eB)
col( eF )
col( eC)
col( eD)
col( eG)

xr
yr


. (3.38)

Note that the resulting algorithms have two principal distinctions from
the extended KF: (i) the algorithm updates estimates on the whole window
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of length ∂ and (ii) the realistic hard bounds on the estimated quantities
reduce the ambiguity of the model arising from estimating a product of two
unknowns.

3.5 Specification of the minimal memory length

The maximal value of the memory length ∂max is limited by the computational
feasibility. For the specification of the minimal memory length ∂min, we stem
from the assumption that the number of the inequalities for LP should be
comparable with the size X` of the estimated quantity X. For the memory
length ∂, the number of the inequalities for LP (3.17) is 2(∂ + 1)(x` + y`).
That number follows from the length of the vector B in (3.17).

The requirements on ∂min for the particular tasks are as follows.

State estimation
• X` = x`(∂ + 1) + x` + y`

• ∂min = 1

Parameters estimation
• X` = (x` + y`)(x` + y` + 2)
• ∂min = (x` + u`)/2

Joint estimation
• X` = x`(∂ + 1) + p` + x` + y`

• ∂min = (p` − y`)/(x` + 2y`), 1 ≤ p` ≤ (x` + y`)(x` + u` + 1)

Note that all tasks include the estimation of the innovations boundary.



Chapter 4

LU model of intersection

In this section, the LU state model (see Section 3.1) of the intersection is
constructed. First, the the main transportation characteristics are introduced.
Then, the the state and output model equations are designed. They stem
from the hydro-dynamical analogy described in [23]. There, the law of mass
conservation is exploited. In short: “The number of the cars that arrive to the
intersection is equal to the number of cars that depart it plus the number of
cars that stay in the queue.” The proposed LU state model of the intersection
substantially differ from the state model defined in [23]. The main differences
are (i) in the type of the innovations and (ii) in the style of the queue indicator.

4.1 Basic transportation characteristics

The considered intersection is controlled by the traffic lights. For the pur-
pose of the traffic control design, it is important to know lengths of the car
queues that are formed on the arms of the intersection. The queues cannot be
measured directly. The queue length has to be estimated. The estimation is
based on the knowledge of characteristics, which are measured on the traffic
detectors.

All quantities needed for construction of the intersection model are sum-
marized in the following table where period means duration of the whole traffic
light (TL) cycle.

41
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name notation unit description
queue length ξt;i u.c. the number of the cars before the TL

(for the i-th arm)
occupancy Ot;i % relative time of detector activation,

i.e., the ratio detector activation
to the period length

input intensity It;i u.c/per. amount of cars passing per period
through the input detector

passage Pt;i u.c/per. amount of cars passing per period
from arm i
into the intersection space

output intensity Yt;i u.c/per. amount of cars passing per period
through the output detector

saturated flow Si u.c/per. saturated flow, i.e., maximal amount
of cars that can go through the arm i
of the intersection per period

turning rate αji – ratio of cars that from direction j
turn to the direction i
to all cars from direction j

green time zt;i – ratio of the “green” time
and period (TL cycle time)

– κi, βi, λi – constants describing linear relation
between queue length and occupancy

where
u.c. means unit car
t is time index
i, j denote i-th and j-th arm of the intersection, respectively
TL means the traffic light
per. is period

Note that the period of the TL cycle is taken as unit for the simplicity and
therefore omitted in the following computations.

Note that the input intensity I is denoted by the same symbol as the unit
matrix. We use this notation only in this Section and in the Section 5.2 where
an example with transportation data is presented. In these Sections, the unit
matrix is not used. Therefore, the misunderstanding cannot occur.

The following relations hold for each arm of the n-arm intersection (see an
example of the 4-arm intersection on Figure 4.1):
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ξt+1;i = ξt;i − Pt;i + It;i (4.1)

Pt;i = min(ξt;i + It;izt;i, Sizt;i) (4.2)

Ot+1;i = κiξt;i + βiOt;i + λi (4.3)

Yt;i =
n∑

j=1

αji Pt;j =
n∑

j=1

αji min [ξt;j + It;jzt;j, Sjzt;j] (4.4)

αj = [αj 1, . . . , αj n]′ (4.5)
n∑

i=1

αji = 1, αjj = 0, αji ≥ 0, i, j = 1, . . . , n (4.6)

Yt+1;i =
n∑

j=1

αji(−ξt+1;j + It;j + ξt;j) (4.7)

where
i, j ∈ {1, 2, . . . , n}.

We shall use the matrix aggregation ξt = [ξt;1, . . . , ξt;n]′, Pt = [Pt;1, . . . , Pt;n]′,
etc.

Figure 4.1: The 4-arm intersection with quantities related to i-th arm
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4.2 Intersection model

Now, the n-arm intersection will be described by LU state model that is
introduced in Section 3.1. Here, the state xt is represented by the pair of
queue length and occupancy, i.e., xt = [ξ′t, O

′
t]
′, the output yt contains output

intensity and occupancy, i.e., yt = [Y ′
t , O

′
t]
′. The “relative green” zt represents

the system input, i.e., ut = zt. Then, the model of the n-arm intersection has
the form

[
ξt

Ot

]
= cAt

[
ξt−1

Ot−1

]
+ cBtzt + cFt + xet (4.8)[

Yt

Ot

]
= cCt

[
ξt

Ot

]
+ cDtzt + cGt + yet, (4.9)

where the specific form of system matrices cAt,
cBt, etc. will be constructed

using the relations (4.1) - (4.7) as follows.
First, the nonlinear form (4.2) is treated. We can write it equivalently

Pt;i = (1− pt;i)(ξt;i + It;izt;i) + pt;iSizt;i, i = 1, . . . , n, t ∈ t∗ (4.10)

with the queue indicator pt;i

pt;i = 0 for ξt;i + It;izt;i < Sizt;i,

pt;i = 1 for ξt;i + It;izt;i > Sizt;i.

We don’t know the true value of ξt;i, we have only its estimate at disposal.
Therefore, an approximation of pt;i is needed. We interpret pt;i as “weight”,
i.e., pt;i ∈ [0, 1]. We propose for (4.10) the following requirements on pt;i

pt;i = 0 for ξ̂t;i + It;izt;i ≤ Sizt;i − k, (4.11)

pt;i = 0.5 for ξ̂t;i + It;izt;i = Sizt;i,

pt;i = 1 for ξ̂t;i + It;izt;i ≥ Sizt;i + k.

with a small k > 0.
The value of pt;i will be set in the each step according to the current value

of the intensity It;i and the current estimate ξ̂t;i.
The requirements (4.11) can be met by the use of the function

p(y) =
1

1 + eb(a−y)
(4.12)

where p(y) ∈ [0; 1], p(a) = 0.5, b determines the rate of transition between 0
and 1, see Figure 4.2.
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Figure 4.2: Weight pt;i = p(y) depending on value ξ̂t;i + It;izt;i = y

Here, y = ξ̂t;i + It;izt;i, a = Sizt;i.
Note that the original model defined in [23] instead of the weight p works

with a “two-throw switch” δ.

With the proposed weight p, the model matrices in (4.8) and (4.9) are as
follow

cAt =

[
diag(pt) 0(n,n)

diag(κt) diag(βt)

]
, cBt =

[
−diag(pt . ∗ S + (1− pt) . ∗ It)

0(n,n)

]
, cFt =

[
It

λt

]

cCt =

[
ct 0(n,n)

0(n,n) I(n,n)

]
, cDt =

[
dt

0(n,n)

]
, cGt = 0(2n,1), (4.13)

where (n, n) sub-matrices ct and dt have the entries

ct;ij = αji(1− pt;j), dt;ij = αji [(1− pt;j)It;j + pt;jSj]

and
pt, κt, βt, λt are column vectors, pt = [pt;1, . . . , pt;n]′, etc.

diag(v) =


v1 0 . . . 0
0 v2 . . . 0
...

...
. . .

...
0 0 . . . vm`

, v is a column vector;

α =
[

α1 . . . αn

]′
;

ξ̂t is the point estimate of the state ξt;
.∗ means element-by-element multiplication
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4.3 Joint on-line estimation of the intersec-

tion

Joint on-line parameter and state estimation, see page 37, consists in
searching for the MAP estimate of Xt (3.36), t ∈ t∗. This problem is solved
by the LP (3.33). Here, the estimated quantity

Xt =
[
(xt:t−∂)′, col( eA)′, col( eB)′, col( eF )′, col( eC)′, col( eD)′, col( eG)′, xr′, yr′

]′
has the following entries (col(M) stacks the non-zero rows of the matrix M
into a column vector)

eA =

[
0(n,n) 0(n,n)

diag(κt) diag(βt)

]
, eB = 0(2n,n),

eF =

[
0(n,1)

λt

]
(4.14)

eC = 0(2n,2n),
eD = 0(2n,n),

eG = 0(2n,1).

The known part of the model matrices (4.13) are as follows

At =

[
diag(pt) 0(n,n)

0(n,n) 0(n,n)

]
, Bt = cBt,

cFt =

[
It

0(1,n)

]
(4.15)

Ct = cCt, Dt = cDt, Gt = cGt,

where

- the value of the saturated flow S is given by the intersection properties

- the value of the green ratio zt is given by the traffic scheme

- the values of the input intensity It are obtained from the traffic detectors

- the values of the queue indicator pt are obtained in the each time step by
the help of (4.12).

- the values of the turning rates α are either substitute by their mean values
obtained by the long-term measuring on the intersection or estimated
on-line by the help of equations (4.4) and (4.6)

The boundaries for LP, X t and X t, are in the form (3.38) with
0 ≤ ξt;i, 0 ≤ Ot;i ≤ 100, 0 ≤ xri ≤ 2, 0 ≤ xri ≤ 2, 0 ≤ κi, 0 ≤ βi, 0 ≤ λi,

i ∈ {1,≤, n}.
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Experiments

Here, two examples are presented: (i) a simple example that illustrates the
properties of the proposed algorithms and (ii) an application of the estimation
algorithm to the transportation data that were obtained from the Aimsun
environment 1 (see www.aimsun.com).

5.1 Simulated example

The purpose of the simple example is to present the main features of the
estimation algorithms.

5.1.1 Model description

The two state system with scalar input and output and uniform noise is sim-
ulated. The model is described by the LU model (3.1), (3.2) and (3.4) with
constant model matrices (with time indexes omitted), i.e.,

xt = cAxt−1 + cBut + cF + xet, f ( xet) = U (0, xr) , (5.1)

yt = cCxt + cDut + cG + yet, f ( yet) = U (0, yr) (5.2)

with
cA =

[
1 0.5

−0.5 0

]
, cB =

[
1
3

]
, cF =

[
0
0

]
, xr =

[
10−1

10−1

]
,

cC =
[

1 1
]
, cD = 0, cG = 1, yr = 10−1.

1AIMSUN is a microscopic traffic simulator that can deal with different traffic networks:
urban networks, freeways, highways, ring roads, arterial and any combination thereof. It
has been designed and implemented as a tool for traffic analysis to help traffic engineers in
the design and assessment of traffic systems. It has proven to be very useful for testing new
traffic control systems and management policies, either based on traditional technologies or
as implementation of Intelligent Transport Systems.
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The input is simulated as a random signal, uniformly distributed on the
interval [−1, 1], with independent values for different time moments. The data
set consists of t̊ = 500 data pairs (inputs and outputs).

Using the notation (3.3), we get

cM = M + eM

where M contains known entries of cM and eM contains estimated entries of
cM , M ∈ {A, B, F, C, D, G}.

5.1.2 Evaluation of experiments

To evaluate the quality of the estimation, the mean error (ME) of the output
predictions and ME of state or parameter estimates are used, respectively.
Generally, ME of the quantity E is computed entry-wise in the following way

MEE =
1

t̊

t̊∑
t=1

|Et −Rt| (5.3)

where Et are the predicted outputs, state estimates and parameter estimates,
respectively, Rt are the true values of the outputs and states, respectively,
t̊ is the number of the samples. In the case of the parameter estimation
Rt = R, t ∈ {1, 2, ..., t̊}, R ∈ { cA, cB, cF, cC, cD, cG}.

Further, the Matlab function “polyfit” is used to fit a polynomial to data

p = polyfit(x, y, n) (5.4)

that finds the coefficients of a polynomial p(x) of degree n that fits the data y
best in a least-squares sense; p is a row vector of length n + 1 containing the
polynomial coefficients in descending powers, i.e.,

p1x
n + p2x

(n−1) + ... + pnx + pn+1.

In this way, we can find tendencies in the interrelationships of the observed
quantities.

5.1.3 State estimation

Here, the states xt, t ∈ t∗, and the innovation boundaries xr, yr are estimated
while all system matrices are supposed to be known. The estimation algorithm
(described in Section 3.4.2) is running on-line with the various memory lengths
∂.

Figure 5.1 shows how the ME (5.3) of the output predictions depends on
the memory length ∂. We can see that ME has from the beginning the lower
values than for higher values of ∂ but there is a sharp decrease around ∂ ≈ 20.
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Figure 5.2 shows how the ME (5.3) of the state estimates depends on the
memory length ∂. We can see that the ME of the state estimates decreases at
the beginning relatively quickly and then stays within a narrow interval. A
jump is observable again around ∂ ≈ 20.

The dependence of the computation time t∂ on the memory lengths ∂
for chosen values of ∂ is displayed in Table 5.1. The computational time t∂
increases with the increasing memory length ∂ approximately according to
the relation

t∂ ≈ 0.075∂2 − 1.19∂ + 19.09 [s].

This relation was obtained by a function “polyfit” (5.4) from the known values
t∂ and ∂ and has only a relative meaning. The absolute values depend on the
efficiency of used computer.

∂ 5 10 15 20 25 30 35 40 45 50 55 60
time t∂ [s] 11 18 27 37 54 73 98 123 159 197 249 304

Table 5.1: Computation time t∂ depending on memory length ∂

5.1.4 Parameter estimation

Here, the model matrices eA, eB, eF, eC, eD, eG and the innovation boundaries
xr, yr are estimated while the states xt, t ∈ t∗, are supposed to be known.
The estimation algorithm described in Section 3.4.3 is running on-line with
various memory lengths ∂.

Figure 5.3 shows how ME (5.3) of output prediction depends on the mem-
ory length ∂. Similarly to the case of the state estimation, ME is smaller for
the small values of ∂. The jump around ∂ ≈ 20 is less obvious.

To illustrate how ME (5.3) of the parameter estimates depends on the
∂, the estimate of eC in (5.2) were chosen as a representant, see Figure 5.4.
We can see that ME decreases at the beginning and then oscillates within a
narrow interval.

The dependence of the computation time t∂ on the memory lengths ∂
is displayed in Table 5.2. From measured values of t∂ and ∂, the following
relation was obtained by the function “polyfit” (5.4):

t∂ ≈ 0.055∂2 − 0.731∂ + 20.53[s]

and it has again only a relative meaning. The absolute values depend on the
efficiency of used computer.

∂ 5 10 15 20 25 30 35 40 45 50 55 60
time (s) 13 19 25 32 41 53 67 82 99 121 142 163

Table 5.2: Computation time t∂ depending on memory length ∂
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5.1.5 Joint parameter and state estimation

Here, the states xt, t ∈ t∗, the model matrices eA, eB, eF, eC, eD, eG and
the innovation boundaries xr, yr are estimated. The estimation algorithm
described in the Section 3.4.4 is running on-line with various memory lengths
∂. Two cases are considered.

1. All model matrices are completely estimated, i.e., eA = cA, eB = cB,
etc. The restrictions on the entries of the model matrices are chosen so that
all entries of the estimated model matrices should be within the interval given
by

cM(i, j)−K1 ≤ eM(i, j) ≤ cM(i, j) + K2,

where cM(i, j) and eM(i, j), i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}, are i-th rows
and j-th column entry of the simulated model matrix cM and estimated model
matrix eM , respectively, both of the size (m, n), K1, K2 are positive scalars.

2. The 2nd row and 2nd column entry of the model matrix A and the
vector F are supposed to be known. The above mentioned restrictions are
used on the remaining entries.

The comparison of the ME (5.3) of the state estimates for cases 1 and 2
and various memory lengths ∂ is on Figure 5.5. We can see that ME of the
state estimates is smaller in the case of the partially known model matrices.

The comparison of the ME (5.3) of model parameters is on the Figure 5.6.
The parameter cG in (5.2) was chosen as a representative because of the most
remarkable difference between the case 1 and 2.

5.1.6 Discussion of the results

State estimation

The smaller values of ∂ provide more freedom in the fitting of the avail-
able data items, i.e., smaller fitting errors can be achieved. On the other
hand, we have not enough data for more precise state estimation and
their uncertainty increases prediction errors.

For our purposes, it is important to have the small state estimation er-
rors. Therefore, the ∂ need to be sufficiently long to reach the interval
of the minimal state errors. Although the computation time increases
nonlinearly with the increasing ∂, the experiment shows that the esti-
mation is feasible because of the relatively fast decreasing of ME of the
state estimates.

The jumps around ∂ ≈ 20 indicate this value as a proper one for the
studied example.

Parameter estimation
We can summarize similarly to the previous case of the state estimation.
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The smaller values of ∂ provide more freedom in the fitting of the avail-
able data items, i.e., smaller fitting errors can be achieved. On the other
hand, we have not enough data for more precise parameter estimation.

For our purposes, it is important to have the small state estimation er-
rors. Although the computation time increases nonlinearly with the in-
creasing ∂, the experiment shows that the estimation is feasible because
of the relatively fast decreasing of ME of the parameters estimates.

In this case, ∂ ≈ 20 could be also taken as a reasonable choice but less
supported by the results.

Joint estimation
The experiment with joint parameter and state estimation supports the
intuitive expectation that the knowledge of some model matrices entries
improves the quality of the state and parameter estimation measured by
the ME of estimate errors, see Figures 5.5 and 5.6. Moreover, the partial
knowledge of the model matrices decreases or even remove the ambiguity
of the state and parameter estimates caused by the products eA xt−1

and eC xt in the model equations (5.1) and (5.2), respectively. This
fact is important in the real data application. There, every small piece
of the information about model matrices improves the quality of the
estimation. In the LU model, the incorporation of our prior knowledge
into the model is very easy. It consists on the adding of the constraints,
i.e., additional inequalities, into the linear programming.
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Figure 5.1: ME of the output predictions depending on the memory length ∂

Figure 5.2: ME of the state estimates depending on the memory length ∂
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Figure 5.3: ME of the output predictions depending on the memory length ∂

Figure 5.4: ME of eC estimates depending on memory length ∂
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Figure 5.5: ME of the state estimates depending on memory length ∂ for all
model matrices unknown (dashed line) and partially known model matrices
(solid line)

Figure 5.6: ME of eG estimates depending on memory length ∂ for all model
matrices unknown (dashed line) and partially known model matrices (solid
line)
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5.2 Application to the traffic data

5.2.1 Data description

Here, the estimation algorithms are applied on the traffic data obtained from
the Aimsun environment, see footnote on the page 47. Data describe a four-
arm controlled intersection. The data set contains the occupancies, input and
output intensities on the individual intersection arms, see Figure 4.1, for the
whole workweek, i.e., five days. Time difference between two data items is 90
seconds. Total amount of the data entries is about 5000.

For the intersection specification, the LU model equations (4.8) and (4.9)
are used with the model matrices (4.13) that can be divided into the estimated
part (4.14) and known part (4.15).

We suppose that saturated flow S, green time zt, turning rates α, param-
eter p are known or estimated outside of the LU model, see page 46.

Note that all above mentioned transportational quantities and constants
are introduces in Section 4.1.

5.2.2 Joint estimation with partially known parameters

Here, we perform the on-line joint estimation of the states, i.e., queue length
ξ and parameters κ, β, λ. Simultaneously, the parameter p is estimated using
the newest possible estimate of ξ by the help of the function (4.12) and the
estimate of p is subsequently used in the LU model. For the parameters α
their off-line estimates are used.

Figure 5.7 illustrates the dependence of the ME (5.3) of the state estimates
on the memory length ∂.

Figures 5.8 and 5.9 compare the state estimates for two different values
of ∂. On these Figures, the segments with 100 time entries were chosen to
illustrate whole course.

5.2.3 Discussion of the results

We suppose that the higher ME (5.3) of the state estimates occurs for the
higher values of ∂ because of the changes in the system dynamics. The lesser
∂ corresponds to the higher level of the forgetting. The more is old information
forgotten the more quickly can the estimation algorithm react on the changes
as we can see on Figures 5.8 and 5.9.

In the experiment, the parameters κ, β, λ were estimated. The parameter
p was figured out by the help of deterministic relation (4.12) on the basis of the
last state estimate. The turning rates α weren’t estimated in this experiment.

Comparing the mean value of the queue length ξ and the ME of its esti-
mates, the ME reaches approximately 20% of the mean value ξ except of the
3rd arm. Here, the ME is around 50% of the mean value of ξ.
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We suppose that the big error on the 3rd arm is caused mainly by the using
of the off-line estimates of the turning rates α. We expect an improvement of
the estimation after the introduction of the on-line estimates α.

We would like to point out that this example is only illustrative. We
are going from the intersection description [23]. This description is currently
under further development, see e.g. [24], but it is not finished yet. The main
modification consists in the considering of the varying saturation flow S, in
the modification of the relations for the occupancy O and in the including of
the input intensity I into the state vector.
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Figure 5.7: Mean errors of queue length estimates depending on memory
length ∂
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Figure 5.8: Simulated queues (dotted line), estimated queues with ∂ = 5 (full
line) and with ∂ = 35 (dashed line)
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Figure 5.9: Simulated occupancies (dotted line), estimated occupancies with
∂ = 5 (full line) and with ∂ = 35 (dashed line)



Chapter 6

Conclusions

6.1 Results

In this thesis, the linear state model with uniform innovations (LU model) is
proposed as an alternative to the Kalman filter. The algorithms are evaluated
for the parameter estimation, state filtration and finally also for the joint
parameter and state estimation including the estimation of the innovations
ranges. For the on-line estimation, the approximation is proposed that keeps
the computational feasibility of the algorithms in acceptable ranges. The
functionality of the proposed algorithms is demonstrated on the illustrative
examples, one of them with transportation data.

6.2 Contribution of the work

We see especially the following contributions of the thesis:

- proposed LU model is a promising alternative for the KF in the case of
bounded data;

- compared with the “unknown-but-bounded” approaches, the LU model es-
timation keeps the advantages of the probabilistic approach;

- the produced Matlab algorithms are computationally feasible - the MAP
estimation of the LU model converts into the problem of linear pro-
gramming;

- LU model allows to respect hard, physically given, prior bounds on model
parameters and states; the realistic hard bounds on the estimated quan-
tities reduce the ambiguity of the model (arising from estimating a prod-
uct of two unknowns) in the case of the joint parameter and state esti-
mation;

- LU model respects natural bounds on stochastic disturbances and it allows
estimation of the innovation ranges;
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- the on-line algorithm updates estimates on the whole window of chosen
length ∂;

- the off-line estimates of the innovations boundaries can be used for the initial
setting of covariances for Kalman filtering;

- application on the traffic data is promising; we avoid, among others, the
eventual negative estimates of the queue length that can occur by the use
of the KF, caused by the unbounded support of the normal distribution;

- the proposed approach opens a way for on-line parameter and state estima-
tion for a class of non-uniform distributions with restricted support as
well as for Bayesian filtering of non-linear systems.

The actual contribution of the author
The development of the LU model and its estimation required many par-

ticular tasks. The most important subtasks made by the author are:

- embedding of the model with bounded innovations into the Bayesian frame-
work

- discussion of the finite memory problem

- design of the approximate algorithm for the on-line joint estimation of the
states and parameters

- conversion of the MAP estimation problem into the LP task

- design of the working algorithms in Matlab

- improving of the original traffic model by the continuous queue indicator

6.3 Future research

The future research will be oriented mainly on the further improving of the
estimates quality.

Generally, the LU model estimation can be refined by:

- the method of selection of the inequalities for LP according to [25], see
Subsection 6.3.1;

- the computation of the parameter estimates precision, see Subsection 6.3.2;

- the approximation of the non-uniform pdf by the uniform one, a principle
of this method is outlined on the page 31; up to now we use “cutting
off” method
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- the use of the nonlinear programming that removes the linearization needed
for the performing of the LP, see its description on the page 16.

Particularly, the LU model of the intersection can be improved by:

- the introduction of the model for the input intensity, see Subsection 6.3.3;

- by the on-line estimation of α, the possible way is suggested on the page 46.

6.3.1 Choice of the inequalities for LP

In the thesis, we use the method of the sliding window of the length ∂, i.e.,
∂ + 1 inequalities is taken into the LP. If the new data item is available, the
oldest one is thrown away to keep the constant number of the inequalities.
Sometimes, a newer data can be less informative than an older one. The
method how to recognize the “worst” data is described in [25] and applied
here on the autoregressive model. We aim to modify it for the state model.

6.3.2 Computation of the parameter estimates preci-
sion

Till now, we worked only with MAP estimates. We aim to refine our results
also by an estimation of the precision of these point estimates. The original
MAP estimation task gives result X̂ for the posterior pdf f(X|D). Now, we

aim to find the approximative uniform pdf f̃(X|D) = UX

(
X̂, XR

)
so that the

distance between f and f̃ is minimal. For this purpose, the Kullback-Leibler
divergence [26] will be used that measures well proximity of a pair of pdfs.

6.3.3 Model of the input intensity

In the LU model of the intersection, we take the measured input intensity It

as a known time-varying part of the model matrix. An introduction of the
relation

It = H It−1 + iet

where H is matrix of the appropriate size, iet are the uniformly distributed
innovations, changes the meaning of It. Then, It will play the role of a mea-
surable system state.
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6.4 Publications of the author

6.4.1 Publications relating to thesis

L. Pavelková, “Approximate on-line estimation of uniform state model with
application on traffic data”, Tech. Rep. DAR 2008/2, ÚTIA AV ČR, Praha,
2008.

L. Pavelková, “Problem of state filtering in case of partially known system
matrices”, in Proceedings of the 9th International PhD Workshop Information
Technologies & Control. Young Generation Viewpoint, Ljubljana, October 1-3
2008, pp. 1–6.

M. Kárný and L. Pavelková, “Projection-based Bayesian recursive estimation
of ARX model with uniform innovations”, Systems & Control Letters, vol.
56, no. 9/10, pp. 646–655, 2007.

L. Pavelková, M. Kárný, and V. Šmı́dl, “Towards Bayesian filtering on re-
stricted support.”, in Proceedings of NSSPW ’06. Cambridge, Cambridge,
October 4-8 2006, pp. 1–4, University of Cambridge.

L. Pavelková and M. Kárný, “Estimation of ARX model with uniform noise
- algorithm and example.”, in Proceedings of the 6th International PhD
Workshop Information Technologies & Control. Young Generation Viewpoint,
Ljubljana, October 4-8 2005, pp. 1–6.

6.4.2 Other publications

I. Nagy, L. Pavelková, and K. Dedecius, “Partial forgetting in estimation of
regression models”, Tech. Rep. 2200, ÚTIA AV ČR, Praha, 2007.

E. Suzdaleva, I. Nagy, L. Pavelková, and Jitka Homolová, “Edukalibre.
guide”, Tech. Rep. 2145, ÚTIA AV ČR, Praha, October 2005.

E. Suzdaleva, I. Nagy, L. Pavelková, and M. Kárný, Edukalibre Examples.
(Program), ÚTIA AV ČR, Praha, 2005.

M. Novák and L. Pavelková, “Optimization of controller design using Monte-
Carlo simulation”, in Multiple Participant Decision Making. CMP’04, J. Andrýsek,
M. Kárný, and J. Kraćık, Eds., Praha, May 2004, pp. 1–15, ÚTIA AV ČR.

M. Kárný, P. Nedoma, N. Khailova, and L. Pavelková, “Prior information
in structure estimation”, IEE Proceedings. Control Theory and Applications,
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vol. 150, no. 6, pp. 643–653, 2003.

L. Pavelková, “Influence of prior knowledge on structure estimation. Ab-
stract”, in Proceedings of the 4th International PhD Workshop Information
Technologies & Control. Young Generation Viewpoint, K. Belda, Ed., Praha,
September 2003, p. 23, ÚTIA AV ČR.

L. Pavelková and I. Nagy, “Search for an Optimal Setup of Stabilized Forget-
ting in Estimation”, Tech. Rep. 2089, ÚTIA AV ČR, Praha, 2003.

I. Nagy, P. Nedoma, M. Kárný, L. Pavelková, and P. Ettler, “O bayesovském
učeńı”, AUTOMA, , no. 7, pp. 56–60, 2002.

I. Nagy, P. Nedoma, M. Kárný, L. Pavelková, and P. Ettler, “Modelováńı
chováńı složitých systémů pro podporu operátor̊u”, Automa, vol. 8, no. 11,
12, pp. 54–57, 44–49, 2002.

L. Pavelková, “Webovské stránky odděleńı AS”, Tech. Rep. 2043, ÚTIA AV
ČR, Praha, 2002.

M. Kárný, L. Pavelková, A. Halousková, and P. Nedoma, “Estimation of
approximate Markov chains”, in Adaptive Systems in Control and Signal
Processing. Preprints, Cs. Bányász, Ed., Budapest, June 1995, pp. 317–322,
IFAC.

L. Pavelková, “Approximate identification of Markov chains”, in Computer-
Intensive Methods in Control and Signal Processing, L. Kulhavá, M. Kárný,
and K. Warwick, Eds., Praha, September 1994, pp. 335–340, ÚTIA AV ČR.

M. Kárný, A. Halousková, and L. Zörnigová, “Bayesian Pooling of Expert
Opinions”, Tech. Rep. 1799, ÚTIA AV ČR, Praha, 1994.

M. Kárný, A. Halousková, and L. Zörnigová, “On pooling expert opinions”,
in 10th IFAC Symposium on System Identification. Preprints, M. Blanke and
T. Söderström, Eds., Copenhagen, July 1994, pp. 477–478, IFAC.

L. Zörnigová, “Přibližná identifikace markovského řetězce”, Tech. Rep. 1769,
ÚTIA AV ČR, Praha, 1993.

6.4.3 Responses on the authors publications

Searching inside the databases “Scopus”, “Web of Sciences” and by the help
of scholar.google.com, we found the following responses to the paper [25]
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K. Ramesh, N. Aziz and S. R. A. Shukor, “Development of NARX Model for
Distillation Column and Studies on Effect of Regressors”, Journal of Applied
Sciences 8 (7): pp. 1214-1220, 2008.

K. Ramesh, S. R. A. Shukor and N. Aziz, “Development of sigmoidnet based
NARX model for a distillation column”, Chemical Product and Process Mod-
eling 3 (2), art. no. 4, 2008.
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Appendix - Algorithms

function FacMem = facstate(stsize, ysize, usize, mem)

%

% build cell array of the state factors with uniform noise

%

% x_t = (A+Ae) x_{t-1} + (B+Be) u_t + (F+Fe) + ex_t,

% ex_t ~ (-rx,rx), rx is vector, rx_i > 0

%

% y_t = (C+Ce) x_t + (D+De) u_t + {G+Ge} + ey_t,

% ey_t ~ (-ry,rx), ry is vector, ry_j > 0

%

% A ... known possibly time-variant part

% Ae ... estimated time-invariant part

% Ac = A + Ae ... complete model matrix

%

% FacMem = facstate(stsize, ysize, usize)...mem=0 ...only current values

% FacMem = facstate(stsize, ysize) ...usize=1...scalar input

% FacMem = facstate(stsize) ........ysize=1...scalar output

%

% stsize : size (length) of state vector

% ysize : size (length) of output vector

% usize : size (length) of input vector

% noise boundary rx, ry

%

% Design : LP, June 2007

% Project: DAR

if nargin<4 % test of arguments

mem=0; % no memory, only current values

end

if nargin<3

usize=1; % scalar input

end

if nargin<2

ysize=1; % scalar output

end % end of the test
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% known parts of model matrices

A = zeros(stsize,stsize);

B = zeros(stsize,usize);

F = zeros(stsize,1);

C = zeros(ysize,stsize);

D = zeros(ysize,usize);

G = zeros(ysize,1);

% estimated parts of model matrices, unknown parameters

Ae = zeros(stsize,stsize);

Be = zeros(stsize,usize);

Fe = zeros(stsize,1);

Ce = zeros(ysize,stsize);

De = zeros(ysize,usize);

Ge = zeros(ysize,1);

% complete model matrices - used in predictor and simulator

Ac = zeros(stsize,stsize);

Bc = zeros(stsize,usize);

Fc = zeros(stsize,1);

Cc = zeros(ysize,stsize);

Dc = zeros(ysize,usize);

Gc = zeros(ysize,1);

% matrices of the indicators for the estimation

% known entries ... 0

% unknown entries ... 1

Ai = zeros(stsize,stsize);

Bi = zeros(stsize,usize);

Fi = zeros(stsize,1);

Ci = zeros(ysize,stsize);

Di = zeros(ysize,usize);

Gi = zeros(ysize,1);

% half-width of innovation boundary

xr = 1e-6*ones(stsize,1);

yr = 1e-6*ones(ysize,1);

state=zeros(stsize,1); % current state

state_old=zeros(stsize,1);% state in previous time instant

% build the resulting factor

Fac = struct(’stsize’,stsize,’ysize’,ysize,’usize’,usize,...
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’A’,A,’B’,B,’F’,F,’C’,C,’D’,D,’G’,G,...

’Ae’,Ae,’Be’,Be,’Fe’,Fe,’Ce’,Ce,’De’,De,’Ge’,Ge,...

’Ac’,Ac,’Bc’,Bc,’Fc’,Fc,’Cc’,Cc,’Dc’,Dc,’Gc’,Gc,...

’Ai’,Ai,’Bi’,Bi,’Fi’,Fi,’Ci’,Ci,’Di’,Di,’Gi’,Gi,...

’xr’,xr,’yr’,yr,’state’,state,’mem’,mem,’state_old’,state_old);

% build the cell array of mem + 1 factors

FacMem=cell(1,mem+1); % mem=0 ... only current value is stored

for i=1:mem+1

FacMem{i}=Fac;

end
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function [Sim,y,x_new] = facsimulust(Sim,u,x_new)

%

% simulation of state factor with uniform noise

% Sim = faxsimulust(Sim,u,x_new)

%

% Sim : simulated state factor with uniform noise

% u : current input

% x_new : current state

%

% Sim : factor with updated state vector

%

% nargin==2 ... state and output computation

% nargin==3 ... only output computation with given state

%

% Design: LP, July 2006

% Project: DAR

global TIME DATA SEED

SEED = rand(’seed’); % seed of noise generator

rand(’seed’,SEED); % set the seed

if nargin<2

error(’ Too little input arguments! ’);

end

if isempty(TIME), error(’TIME is not defined’); end

if isempty(DATA), error(’DATA are not defined’); end

A=Sim{1}.Ac; B=Sim{1}.Bc; F=Sim{1}.Fc;

C=Sim{1}.Cc; D=Sim{1}.Dc; G=Sim{1}.Gc;

xr = Sim{1}.xr;

yr = Sim{1}.yr;

x=Sim{1}.state; % past state

% new data and state items

if nargin==2 % x_new is not given

x_new = A*x + B*u + F + xr*(rand-0.5);

end

y = C*x_new + D*u + G + yr*(rand-0.5);

%state update

Sim{1}.state=x_new;
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function [FacMem,xest,rxest,ryest] = facupdtust(FacMem,lbx,ubx,ubrx,ubry)

% update of statistics for the state model with uniform noise

% state and noise boundaries estimation

% for vectors u,y

%

% x_t = A_t x_{t-1} + B_t u_t + F_t + ex_t,

% ex_t ~ (-rx,rx), rx is vector, rx_i > 0

%

% y_t = C_t x_t + D_t u_t + G_t + ey_t,

% ey_t ~ (-ry,rx), ry is vector, ry_j > 0

%

% [FacMem,xest,rxest,ryest] = facupdtust(FacMem,lbx,ubx,ubrx,ubry)

%

% FacMem : state factor with uniform noise, memory mem

% lbx : lower boundaries of the estimated state

% ubx : upper boundaries of the estimated state

% ubrx : upper boundary for the state noise

% ubry : upper boundary for the output noise

%

% FacMem : state factor with unif. noise updated by current data

% xest : state vector [x(TIME), ..., x(TIME-mem)] estimate

% rxest : state noise estimate

% ryest : output noise estimate

%

% Design : LP, March 2007

% Project : DAR

%

global DATA TIME EF

ysize=FacMem{1}.ysize; % output vector size

ychns=1:ysize; % output channels

usize=FacMem{1}.usize; % input vector size

uchns=ysize+1:ysize+usize; % input channels

stsize=FacMem{1}.stsize; % state vector size

mem=min(FacMem{1}.mem,TIME-1);%

if nargin < 5 % default for output noise boundary

ubry=2*ones(ysize,1);

end

if nargin < 4 % default for state noise boundary

ubrx=2*ones(stsize,1);

end

if nargin < 3 % default for state upper boundary

ubx=Inf*ones((mem+1)*stsize,1);

end



74 BIBLIOGRAPHY

if nargin < 2 % default for state lower boundary

lbx=-Inf*ones((mem+1)*stsize,1);

end

lbx=lbx(1:(mem+1)*stsize);

ubx=ubx(1:(mem+1)*stsize);

% check of the boundaries

if size(lbx,1)~=(mem+1)*stsize

error(’Incorrect lower boundaries for the estimated state’)

end

if size(ubx,1)~=(mem+1)*stsize

error(’Incorrect upper boundaries for the estimated state’)

end

if lbx>=ubx

error(’Lower boundary exceeds upper boundary’)

end

% LP task - search for xx=[x_t’, ... , x_(t-mem)’, xr’, yr’]’

%

% minimize kriterion

% min JJ=ff*xx= sum rx_i + sum ry_j

% under conditions

% AA*xx<=bb

%

% construction of the matrix AA

% | AA11 AA12 |

% AA = | |

% | AA21 AA22 |

%

% AA11 ... size=[2*(mem+1)*stsize, (mem+1)*stsize];

K=[1;-1]; % constant

A=FacMem{1}.Ac;

M1=kron(eye(mem+1),kron(K,eye(stsize)));

M2=kron(eye(mem+1),kron(K,A));

M3=lcol(M2,stsize);

M4=M3(:,1:size(M2,2));

AA11=M1-M4;

% AA12 ... size[2*(mem+1)*stsize, stsize + ysize];

AA12=-kron(ones(2*(mem+1),1),rcol(eye(stsize),ysize));

% AA21 ... size=[2*(mem+1)*ysize, (mem+1)*stsize];

C=FacMem{1}.Cc; % only for constant C

AA21=kron(eye(mem+1),kron(K,C));
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% AA22 ... size=[2*(mem+1)*ysize, stsize + ysize];

AA22=-kron(ones(2*(mem+1),1),lcol(eye(ysize),stsize));

AA=[AA11 AA12;AA21 AA22];

% construction of the vector bb: bb=bb1+bb2

% bb1 ... size=[2*(mem+1)*stsize,1];

bb1=[];

for i=1:mem

B=FacMem{i}.Bc; F=FacMem{i}.Fc;u=DATA(uchns,TIME-i+1);

bb1=[bb1;kron(K,B*u+F)];

end

%last row: i=mem+1

i=mem+1;

A=FacMem{i}.Ac; B=FacMem{i}.Bc; F=FacMem{i}.Fc;

u=DATA(uchns,TIME-i+1); x=FacMem{i}.state_old;

bb1=[bb1;kron(K,A*x+B*u+F)];

% bb2 ... size=[2*(mem+1)*ysize,1];

bb2=[];

for i=1:mem+1

D=FacMem{i}.Dc; G=FacMem{i}.Gc;

u=DATA(uchns,TIME-i+1);y=DATA(ychns,TIME-i+1);

bb2=[bb2;kron(K,y-D*u-G)];

end

% bb ... size=[2*(mem+1)*(stsize + ysize),1];

bb=[bb1;bb2];

% xx

sizexx=[(mem+1)*stsize+stsize+ysize,1];

xx=zeros(sizexx);

% ff

ff=zeros(size(xx));

% ones on the place with rx, ry

ff((mem+1)*stsize+1:size(xx,1),1)=1;

% LP

exitflag=-1;

while exitflag<=0

% boundaries for the xx
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lbX=[lbx;zeros(stsize,1);zeros(ysize,1)];

ubX=[ubx;ubrx;ubry];

% LP computation

options = optimset(’Display’,’off’);

[xx,fval,exitflag]=linprog(ff,AA,bb,[],[],lbX,ubX,[],options);

EF=[EF, [exitflag; TIME]];

% increasing of noise boundaries in the case of LP failure

ubrx=1.5*ubrx; ubry=1.5*ubry;

end

% transformation of the vector xx

% of the size (mem*stsize+stsize+ysize,1)

% to the state set xest(stsize,mem+1) - without rx,ry

% and rxest, ryest with noises estimated

%

% in xx are states ordered by decreasing time (t, t-1, ..., 1)

% change of the time course - xx: t->t-mem, xest: t-mem -> t

xest=[];

for i=1:stsize:(mem+1)*stsize

xestcol=xx(i:i+stsize-1,1);

xest=[xestcol,xest];

end

rxest=xx((mem+1)*stsize+1:(mem+1)*stsize+stsize,1);

ryest=xx((mem+1)*stsize+stsize+1:max(size(xx)),1);

% update of FacMem

for i=1:mem+1 % save the old state

FacMem{i}.state_old=FacMem{i}.state;

end

% update of Fac - state shift

for i=mem+1:-1:2 % shift of state values

FacMem{i}.state=FacMem{i-1}.state;

end

FacMem{1}.state = xx(1:stsize);

FacMem{1}.xr = rxest;

FacMem{1}.yr = ryest;
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function [FacMem,Aest,Best,Fest,Cest,Dest,Gest,rxest,ryest] = ...

facupdtupar(FacMem,lbpar,ubpar,ubrx,ubry)

%

% update of statistics for the state model with uniform noise

% model parameter and noise boundaries estimation

% for vectors u,y

%

% FacMem : state factor

% x_t = (A+Ae) x_{t-1}+ (B+Be) u_t + (F+Fe) + ex_t,

% ex_t ~ (-rx,rx), rx is vector, rx_i > 0

%

% y_t = (C+Ce) x_t + (D+De) u_t + {G+Ge} + ey_t,

% ey_t ~ (-ry,rx), ry is vector, ry_j > 0

%

% A ... known possibly time-variant part

% Ae ... estimated time-invariant part

%

% lbpar : lower boundary on parameters

% ubpar : upper boundary on parameters

% ubrx : upper boundary of the state noise

% ubry : upper boundary of the output noise

%

% FacMem : st. factor with unif. noise updated with current data

% Aest,Best,...: estimates of model parameters

% rxest : state noise estimate

% ryest : output noise estimate

% EF : store exitflags from LP

%

% Design : LP, June 2007

% Project : DAR

global DATA TIME EF

ysize=FacMem{1}.ysize; % output vector size

ychns=1:ysize; % output channels

usize=FacMem{1}.usize; % input vector size

uchns=ysize+1:ysize+usize; % input channels

stsize=FacMem{1}.stsize; % state vector size

if nargin < 5

ubry=2*ones(ysize,1); % default for output noise boundary

end

if nargin < 4

ubrx=2*ones(stsize,1); % default for state noise boundary

end



78 BIBLIOGRAPHY

if nargin < 3 % default for parameters upper boundary

ubpar=struct(’ubA’,[],’ubB’,[],’ubF’,[],’ubC’,[],’ubD’,[],’ubG’,[]);

end

if nargin < 2 % default for parameters lower boundary

lbpar=struct(’lbA’,[],’lbB’,[],’lbF’,[],’lbC’,[],’lbD’,[],’lbG’,[]);

end

Ae=FacMem{1}.Ae; Be=FacMem{1}.Be; Fe=FacMem{1}.Fe;

Ce=FacMem{1}.Ce; De=FacMem{1}.De; Ge=FacMem{1}.Ge;

Ai=FacMem{1}.Ai; Bi=FacMem{1}.Bi; Fi=FacMem{1}.Fi;

Ci=FacMem{1}.Ci; Di=FacMem{1}.Di; Gi=FacMem{1}.Gi;

xr=FacMem{1}.xr; yr=FacMem{1}.yr;

% parameter boundaries

lbA=lbpar.lbA; lbB=lbpar.lbB; lbF=lbpar.lbF;

lbC=lbpar.lbC; lbD=lbpar.lbD; lbG=lbpar.lbG;% lower boundaries

ubA=ubpar.ubA; ubB=ubpar.ubB; ubF=ubpar.ubF;

ubC=ubpar.ubC; ubD=ubpar.ubD; ubG=ubpar.ubG;% upper boundaries

mem=min(FacMem{1}.mem,TIME-1); % memory

% sequence of the state vectors [x(t-mem), ..., x(t)]

State=zeros(stsize,mem+1);

for i=0:mem

State(:,i+1)=FacMem{mem+1-i}.state; % t-mem, ..., t-1, t

end

State=[FacMem{mem+1}.state_old State];% state x_{t-mem-1} added

% LP task: search for xx’ containing Ae,Be,Fe,Ce,De,Ge,rx,ry

% matrices rearranged into vectors

%

% minimize kriterion

% min JJ=ff*xx= sum rx_i + sum ry_j

% under conditions

% AA*xx<=bb

%

% construction of the matrix AA

%

% | AA11 AA12 AA13 |

% AA = | |

% | AA21 AA22 AA23 |
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K=[1;-1]; % constant

% AA11 ... size=[2*(mem+1)*stsize, stsize*stsize+stsize*usize+stsize];

AA11=[];

if mem==0

AA11a=zeros(2*stsize,stsize*stsize); % A part

AA11b=kron(eye(stsize),kron( K,DATA(uchns,1)’ )); % B part

AA11f=kron(eye(stsize),kron( K,1)); % F part

AA11=[AA11;AA11a, AA11b AA11f];

else

for i=1:mem+1

AA11a=kron(K,kron(eye(stsize),State(:,mem+2-i)’)); % A part

AA11b=kron(K,kron(eye(stsize),DATA(uchns,TIME+1-i)’)); % B part

AA11f=kron(K,kron(eye(stsize),1)); % F part

AA11=[AA11;AA11a, AA11b AA11f];

end

end

% AA12 ... size=[2*(mem+1)*stsize, ysize*stsize+ysize*usize+ysize*1];

AA12=zeros(size(AA11,1),ysize*stsize+ysize*usize+ysize*1);

% AA13 ... size=[2*(mem+1)*stsize, stsize+ysize];

AA13=-kron(ones(2*(max(1,mem+1)),1),rcol(eye(stsize),ysize));

% AA21 ... size=[2*(mem+1)*ysize, stsize*stsize+stsize*usize+stsize];

AA21=zeros(2*(mem+1)*ysize, stsize*stsize+stsize*usize + stsize*1);

% AA22 ... size=[2*(mem+1)*ysize, ysize*stsize+ysize*usize+ysize*1];

AA22=[];

for i=0:mem

AA22c=kron(eye(ysize),kron( K,State(:,mem+2-i)’ )); % C part

AA22d=kron(eye(ysize),kron( K,DATA(uchns,TIME-i)’ )); % D part

AA22g=kron(eye(ysize),kron( K,1)); % G part

AA22=[AA22; AA22c,AA22d,AA22g];

end

% AA23 ... size=[2*(mem+1)*ysize, stsize+ysize];

AA23=-kron(ones(2*(mem+1),1),lcol(eye(ysize),stsize));

AA=[AA11,AA12,AA13;AA21,AA22,AA23];

% construction of the vector bb: bb=bb1+bb2

% bb1 ... size=[2*(mem+1)*stsize,1];

bb1=[];
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if mem==0, bb1=zeros(2*stsize,1);

else

for i=1:mem+1

A=FacMem{i}.A; B=FacMem{i}.B; F=FacMem{i}.F;

bb1_=State(:,mem-i+3)-A*State(:,mem-i+2)...

-B*DATA(uchns,(TIME-i+2))-F;

bb1_=kron(K,bb1_);

bb1=[bb1;bb1_];

end

end

% bb2 ... size=[2*(mem+1)*ysize,1];

bb2=[];

for i=1:mem+1

C=FacMem{i}.C; D=FacMem{i}.D; G=FacMem{i}.G;

bb2_=DATA(ychns,(TIME-i+1))-C*State(:,mem-i+2)...

-D*DATA(uchns,(TIME-i+1))-G;

bb2=[bb2; bb2_];

end

Kii=kron(eye((mem+1)),kron(K,eye(ysize)));

bb2=Kii*bb2;

bb=[bb1;bb2];

% xx

sizexx=[size(AA,2),1];

xx=zeros(sizexx);

% ff

ff=zeros(size(xx));

% ones on the place of rx, ry

ff((stsize+ysize)*(stsize+usize+1)+1:size(xx,1),1)=1;

% boundary construction

lbAt=lbA’;lbBt=lbB’;lbFt=lbF’;lbCt=lbC’;lbDt=lbD’;lbGt=lbG’;

ubAt=ubA’;ubBt=ubB’;ubFt=ubF’;ubCt=ubC’;ubDt=ubD’;ubGt=ubG’;

% LP

exitflag=0;

while exitflag<=0;

lbX=[lbAt(:);lbBt(:);lbFt(:);lbCt(:);lbDt(:);...

lbGt(:);zeros(stsize,1);zeros(ysize,1)];

ubX=[ubAt(:);ubBt(:);ubFt(:);ubCt(:);ubDt(:);...

ubGt(:);ubrx;ubry];
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options = optimset(’Display’,’off’);

[xx,fval,exitflag]=linprog(ff,AA,bb,[],[],lbX,ubX,[],options);

EF=[EF, [exitflag; TIME]];

% increasing of noise boundaries in the case of LP failure

ubrx=1.5*ubrx; ubry=1.5*ubry;

end

% transformation of the vector xx

Aestcol=xx(1:stsize^2,1);

maxim=length(Aestcol);

Aest=zeros(stsize,stsize);

for i=1:stsize

Aest(i,:)=Aestcol((i-1)*stsize+1:(i-1)*stsize+stsize)’;

end;

Bestcol=xx(maxim+1:maxim+stsize*usize,1);

maxim=maxim+length(Bestcol);

Best=zeros(stsize,usize);

for i=1:stsize

Best(i,:)=Bestcol((i-1)*usize+1:(i-1)*usize+usize)’;

end;

Fest=xx(maxim+1:maxim+stsize,1);

maxim=maxim+length(Fest);

Cestcol=xx(maxim+1:maxim+ysize*stsize,1);

maxim=maxim+length(Cestcol);

Cest=zeros(ysize,stsize);

for i=1:ysize

Cest(i,:)=Cestcol((i-1)*stsize+1:(i-1)*stsize+stsize)’;

end;

Destcol=xx(maxim+1:maxim+ysize*usize,1);

maxim=maxim+length(Destcol);

Dest=zeros(ysize,usize);

for i=1:ysize

Dest(i,:)=Destcol((i-1)*usize+1:(i-1)*usize+usize)’;

end;

Gest=xx(maxim+1:maxim+ysize,1);

maxim=maxim+length(Gest);

rxest=xx(maxim+1:maxim+stsize,1);

maxim=maxim+length(rxest);

ryest=xx(maxim+1:maxim+ysize,1);
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maxim=maxim+length(ryest);

% update of FacMem

% shift of the older values

for i=mem+1:-1:2

FacMem{i}.Ae=FacMem{i-1}.Ae;FacMem{i}.Be=FacMem{i-1}.Be;

FacMem{i}.Fe=FacMem{i-1}.Fe;

FacMem{i}.Ce=FacMem{i-1}.Ce;FacMem{i}.De=FacMem{i-1}.De;

FacMem{i}.Ge=FacMem{i-1}.Ge;

FacMem{i}.xr=FacMem{i-1}.xr;FacMem{i}.yr=FacMem{i-1}.yr;

end

% current estimates

FacMem{1}.Ae=Aest; FacMem{1}.Be=Best; FacMem{1}.Fe=Fest;

FacMem{1}.Ce=Cest; FacMem{1}.De=Dest; FacMem{1}.Ge=Gest;

FacMem{1}.rx=rxest; FacMem{1}.ry=ryest;

% for the time invariant known part

FacMem{1}.Ac=FacMem{1}.A+Aest; FacMem{1}.Bc=FacMem{1}.B+Best;

FacMem{1}.Fc=FacMem{1}.F+Fest;

FacMem{1}.Cc=FacMem{1}.C+Cest; FacMem{1}.Dc=FacMem{1}.D+Dest;

FacMem{1}.Gc=FacMem{1}.G+Gest;
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function [FacMem,xest,Aest,Best,Fest,Cest,Dest,Gest,rxest,ryest]=...

facupdtall(FacMem,lbx,ubx,lbpar,ubpar,ubrx,ubry)

%

% update of statistics

% for the linear state-space model with uniform innovations

%

% x_t = (A+Ae) x_{t-1} + (B+Be) u_t + (F+Fe) + ex_t,

% ex_t ~ (-rx,rx), rx is vector, rx_i > 0

%

% y_t = (C+Ce) x_t + (D+De) u_t + {G+Ge} + ey_t,

% ey_t ~ (-ry,rx), ry is vector, ry_j > 0

%

% A ... known possibly time-variant part

% Ae ... estimated time-invariant part

%

% state estimation

% model parameter estimation

% noise boundaries estimation

%

% FacMem : state factor with uniform noise

% lbx : lower boundaries of the estimated state

% ubx : upper boundaries of the estimated state

% lbpar : lower boundary on parameters

% ubpar : upper boundary on parameters

% ubrx : upper boundary of the state noise

% ubry : upper boundary of the output noise

%

% FacMem : st. factor with unif. noise updated by current data

% xest : state estimate

% Aest,Best,Cest,Dest

% Fest, Gest : model parameters estimate

% rxest : state noise estimate

% ryest : output noise estimate

%

% Design : LP, May 2008

% Project : DAR

global DATA TIME EF

ysize=FacMem{1}.ysize; % output vector size

ychns=1:ysize; % output channels

usize=FacMem{1}.usize; % input vector size

uchns=ysize+1:ysize+usize; % input channels

stsize=FacMem{1}.stsize; % state vector size
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mem=min(FacMem{1}.mem,TIME-1); % memory length

% default values of the boundaries:

if nargin<7, ubry=2*ones(ysize,1); end % output noise

if nargin<6, ubrx=2*ones(stsize,1);end % state noise

if nargin<5, ubpar=[]; end % parameters

if nargin<4, lbpar=[];end

if nargin < 3

ubx=Inf*ones((mem+1)*stsize,1); % states

end

if nargin < 2

lbx=-Inf*ones((mem+1)*stsize,1);

end

lbx=lbx(1:(mem+1)*stsize); % boundaries on states

ubx=ubx(1:(mem+1)*stsize); % according to actual memory length

if lbx>ubx

error(’Lower boundary exceeds upper boundary’)

end

% parameter boundaries

lbA=lbpar.lbA; % lower boundaries

lbB=lbpar.lbB;

lbF=lbpar.lbF;

lbC=lbpar.lbC;

lbD=lbpar.lbD;

lbG=lbpar.lbG;

ubA=ubpar.ubA; % upper boundaries

ubB=ubpar.ubB;

ubF=ubpar.ubF;

ubC=ubpar.ubC;

ubD=ubpar.ubD;

ubG=ubpar.ubG;

% indicators of the estimated parts of model matrices

Ai=FacMem{1}.Ai; Bi=FacMem{1}.Bi; Fi=FacMem{1}.Fi;

Ci=FacMem{1}.Ci; Di=FacMem{1}.Di; Gi=FacMem{1}.Gi;

% LP task formulation: Search for

% xx’=[x_t, ... x_(t-mem), A_col, B_col, ...

% F_col, C_col, D_col, G_col, rx, ry]

% with matrices rearranged into column vectors

% which minimize the criterion
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% min JJ=ff*xx= sum rx_i + sum ry_j

%

% under conditions

% AA*xx<=bb

% AAeq*xx=bbeq

% lb <= xx <= ub

%

% Construction of the matrix AA:

%

% | AA11 AA12 AA13 AA14 |

% AA = | |

% | AA21 AA22 AA23 AA24 |

% AA11 ... size=[2*(mem+1)*stsize, (mem+1)*stsize];

K=[1;-1]; % constant

Ac=FacMem{1}.Ae+FacMem{1}.A;

M1=kron(eye(mem+1),kron(K,eye(stsize)));

M2=kron(eye(mem+1),kron(K,Ac));

M3=lcol(M2,stsize);

M4=M3(:,1:size(M2,2));

AA11=M1-M4;

% AA12 ... for A,B,F

% size=[2*(mem+1)*stsize, stsize*stsize+stsize*usize+stsize];

AA12=[];

for i=1:mem+1 % choice of the estimated parts of parameters

MA=selallzeros(Ai,FacMem{i}.state);

MB=selallzeros(Bi,DATA(uchns,TIME+1-i));

MF=selallzeros(Fi,1);

AA12a=kron(-K,MA); % A part

AA12b=kron(-K,MB); % B part

AA12f=kron(-K,MF); % F part

AA12=[AA12;AA12a, AA12b AA12f];

end

% AA13

AA13=zeros(size(AA11,1),ysize*stsize+ysize*usize+ysize*1);

% AA14 ... size=[2*(mem+1)*stsize, stsize+ysize];

AA14=-kron(ones(2*(max(1,mem+1)),1),rcol(eye(stsize),ysize));

% AA21 ... size=[2*(mem+1)*ysize, (mem+1)*stsize];

Cc=FacMem{1}.Ce+FacMem{1}.C; % only for constant C

AA21=kron(eye(mem+1),kron(K,Cc));
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% AA22 ... size=[2*(mem+1)*ysize, stsize*(stsize+usize+1)];

AA22=zeros(2*(mem+1)*ysize, stsize*(stsize+usize + 1));

% AA23 ... size=[2*(mem+1)*ysize, ysize*(stsize+usize+1)];

AA23=[];

% first row with predicted state

Bc=FacMem{1}.Be+FacMem{1}.B;

Fc=FacMem{1}.Fe+FacMem{1}.F;

% the newest state prediction

xpred=Ac*FacMem{1}.state+ Bc*DATA(uchns,TIME)’+ Fc;

% row for estimated x_t ... prediction

AA23_ =[selallzeros(Ci,xpred),selallzeros(Di,DATA(uchns,TIME)),...

selallzeros(Gi,1);

-selallzeros(Ci,xpred),-selallzeros(Di,DATA(uchns,TIME)),...

-selallzeros(Gi,1)];

for i=1:mem % choice of the estimated parts of parameters

MC=selallzeros(Ci,FacMem{i}.state);

MD=selallzeros(Di,DATA(uchns,TIME-i));

MG=selallzeros(Gi,1);

AA23c=kron(K,MC); % C part

AA23d=kron(K,MD); % D part

AA23g=kron(K,MG); % G part

AA23=[AA23; AA23c,AA23d,AA23g];

end

AA23=[AA23_;AA23];

% AA24 ... size=[2*(mem+1)*ysize, stsize+ysize];

AA24=-kron(ones(2*(mem+1),1),lcol(eye(ysize),stsize));

AA=[AA11,AA12,AA13,AA14;AA21,AA22,AA23,AA24];

% construction of the vector bb: bb=bb1+bb2

bb1=[];

Ae=FacMem{1}.Ae;

for i=1:mem

B=FacMem{i}.B; F=FacMem{i}.F;

bb1=[bb1;kron(K,-Ae*FacMem{i}.state+B*DATA(uchns,TIME+1-i)+F)];

end

%last row

i=mem+1;

A=FacMem{i}.A; B=FacMem{i}.B; F=FacMem{i}.F;

u=DATA(uchns,TIME-i+1); x=FacMem{i}.state;

bb1=[bb1; kron(K,A*x + B*u + F)];
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% bb2

Ce=FacMem{1}.Ce; D=FacMem{1}.D; G=FacMem{1}.G;

%first item with state prediction

bb2=[Ce*xpred+DATA(ychns,TIME)-D*DATA(uchns,TIME)-G;

-Ce*xpred-DATA(ychns,TIME)+D*DATA(uchns,TIME)+G];

for i=1:mem

bb2a=[Ce*FacMem{i}.state+DATA(ychns,TIME-i)-D*DATA(uchns,TIME-i)-G;

-Ce*FacMem{i}.state-DATA(ychns,TIME-i)+D*DATA(uchns,TIME-i)+G];

bb2=[bb2;bb2a];

end

bb=[bb1;bb2];

% xx

sizexx=[(mem+1)*stsize + (stsize+ysize)*(stsize+usize+2),1];

xx=zeros(sizexx);

% ff

ff=zeros(size(xx));

for i=0:stsize+ysize-1

ff(length(ff)-i)=1; % ones on the place of rx, ry

end

% boundaries for LP

boundstlow= lbx; % lower boundary on states

boundstup = ubx; % upper boundary on states

lbAt=lbA’;boundAlow = lbAt(:);% lower boundaries on parameters

lbBt=lbB’;boundBlow = lbBt(:);

lbFt=lbF’;boundFlow = lbFt(:);

lbCt=lbC’;boundClow = lbCt(:);

lbDt=lbD’;boundDlow = lbDt(:);

lbGt=lbG’;boundGlow = lbGt(:);

ubAt=ubA’;boundAup = ubAt(:); % upper boundaries on parameters

ubBt=ubB’;boundBup = ubBt(:);

ubFt=ubF’;boundFup = ubFt(:);

ubCt=ubC’;boundCup = ubCt(:);

ubDt=ubD’;boundDup = ubDt(:);

ubGt=ubG’;boundGup = ubGt(:);

boundrxlow = zeros(stsize,1); % lower boundary on state noise

boundrxup = ubrx; % upper boundary on state noise

boundrylow = zeros(ysize,1); % lower boundary on output noise

boundryup = ubry; % upper boundary on output noise

boundxxlow = [boundstlow; boundAlow; boundBlow; boundFlow; ...
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boundClow; boundDlow; boundGlow; boundrxlow; boundrylow];

boundxxup = [boundstup; boundAup; boundBup; boundFup; ...

boundCup; boundDup; boundGup; boundrxup; boundryup];

exitflag = -1;

con=1.5;

% for unsuccessful LP repeating with increased noise boundaries

while(exitflag<0)

options = optimset(’Display’,’off’);

[xx,fval,exitflag]=...

linprog(ff,AA,bb,[],[],boundxxlow, boundxxup,[],options);

EF=[EF, [exitflag; TIME]];

ubrx=con*ubrx; ubry=con*ubry;

boundxxup = [boundstup; boundAup; boundBup; boundFup; ...

boundCup; boundDup; boundGup; ubrx; ubry];

end

% decomposition of xx into particular est. states and parameters

bound1=(mem+1)*stsize; % boundary for x_t, ... , x_(t-mem)

bound2=bound1+stsize*stsize; % boundary for A

bound3=bound2+stsize*usize; % boundary for B

bound4=bound3+stsize; % boundary for F

bound5=bound4+ysize*stsize; % boundary for C

bound6=bound5+ysize*usize; % boundary for D

bound7=bound6+ysize; % boundary for G

bound8=bound7+stsize; % boundary for rx

if bound8+ysize~=length(xx),error(’Error in xx decomposition’),end

% states estimates

xest=[];

% change of the time course:

% xx(1:bound1): ((mem+1)*stize,1) - decreasing time

% => xest: (stsize,mem+1) - increasing time

for i=1:stsize:bound1

xestcol=xx(i:i+stsize-1,1);

xest=[xestcol,xest];

end

% param. A estimate

Aestcol=xx(bound1+1:bound2);

for i=1:stsize

Aest(i,:)=Aestcol((i-1)*stsize+1:i*stsize);

end;

% param. B estimate

Bestcol =xx(bound2+1:bound3);

for i=1:stsize

Best(i,:)=Bestcol((i-1)*usize+1:i*usize);

end;
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% param. F estimate

Fest =xx(bound3+1:bound4); % param. F estimate

% param. C estimate

Cestcol=xx(bound4+1:bound5);

for i=1:ysize

Cest(i,:)=Cestcol((i-1)*stsize+1:i*stsize);

end;

% param. D estimate

Destcol =xx(bound5+1:bound6);

for i=1:ysize

Dest(i,:)=Destcol((i-1)*usize+1:i*usize);

end;

% param. G estimate

Gest =xx(bound6+1:bound7); % param. G estimate

rxest=xx(bound7+1:bound8); % rx estimate

ryest=xx(bound8+1:length(xx)); % ry estimate

% update of FacMem

for i=1:mem+1 % save the old state

FacMem{i}.state_old=FacMem{i}.state;

end

for i=mem+1:-1:2 % shift of factor values

FacMem{i}.state= FacMem{i-1}.state;

FacMem{i}.xr = FacMem{i-1}.xr;

FacMem{i}.yr = FacMem{i-1}.yr;

FacMem{i}.Ae = FacMem{i-1}.Ae;

FacMem{i}.Be = FacMem{i-1}.Be;

FacMem{i}.Fe = FacMem{i-1}.Fe;

FacMem{i}.Ce = FacMem{i-1}.Ce;

FacMem{i}.De = FacMem{i-1}.De;

FacMem{i}.Ge = FacMem{i-1}.Ge;

end

% update of newest factor

FacMem{1}.state = xx(1:stsize);

FacMem{1}.xr = rxest;

FacMem{1}.yr = ryest;

FacMem{1}.Ae = Aest;

FacMem{1}.Be = Best;

FacMem{1}.Fe = Fest;

FacMem{1}.Ce = Cest;

FacMem{1}.De = Dest;

FacMem{1}.Ge = Gest;

end
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function M = rcol(M,col)

% extension of the (a,b) matrix M

% by the (a,col) zero matrix Z (from the right)

% M -> [M,Z]

%

% M = rcol(M,col)

%

% M : matrix of the size (a,b)

% col : number of columns of the extension matrix Z

%

% M : extended matrix [M,Z]

%

% Design : LP

% Updated : July, 2006

% Project : DAR

% global DATA TIME

if nargin < 2

error(’This function requires two input arguments’)

end

if col < 0

error(’Number of the columns must be positive’)

end

rowM=size(M,1);

M=horzcat(M,zeros(rowM,col));



BIBLIOGRAPHY 91

function M = lcol(M,col)

% extension of the (a,b) matrix M

% by the (a,col) zero matrix Z (from the left)

% M -> [Z,M]

%

% M = lcol(M,col)

%

% M : matrix of the size (a,b)

% col : number of columns of the extension matrix Z

%

%

% M : extended matrix [Z,M]

%

% Design : LP

% Updated : July, 2006

% Project : DAR

% global DATA TIME

if nargin < 2

error(’This function requires two input arguments’)

end

if col < 0

error(’Number of the columns must be positive’)

end

rowM=size(M,1);

M=horzcat(zeros(rowM,col),M);
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Bayesian learning - parameter esti-

mation, 12
Bayesian learning - state filtration,

12

conditionally independent quantities,
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controlled intersection, 41
controller, 11

data updating, 12, 15
Dirac delta function, 9

internal quantities, 11
internal quantity, 9
intersection model, 43

joint on-line estimation of the inter-
section, 45

joint parameter and state estima-
tion, 15

Kronecker product, 9

likelihood function, 14
LU model, 19

MAP estimate, 15
mathematical programming, 16
mean error, 48

natural conditions of control, 11

observation model, 11

parametric model, 12
predictive pdf, 12
prior pdf, 11, 13

quantity, 9

realization, 9

support, 8
system input, 9
system output, 9
system parameter, 10
system state, 9

Taylor series, 15
time evolution model, 11
time updating, 12, 15
transportation characteristics, 41
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